
Literature review of state of the art Transfer
Learning and Multi-task Learning applications

Author
Jiaxi Zhao∗

Department of Computer Science
TUM

Garching, Munich
jiaxi.zhao@tum.de

Abstract

A huge success has been achieved in Machine Learning and Deep Learning, the
tremendous potential value behind them lies in massive labeled data. However,
there are some domains in which there are not enough labeled data such as legal
domain in natural language processing. As a result, data scarcity problem is a
top ranking problem now. Both Multi-task Learning and Transfer Learning can
be used to solve data scarcity problems by leveraging useful information among
related tasks. In this paper, we first give an overview of both learning methods, then
introduce their principle, structure, advantage and disadvantage of them separately.
Many applications using MTL and TL into different modalities such as text, protein
sequence and source code are introduced, during which their application area, use
case, task, model structure, dataset and results are elaborated. There is a summary
below every modality. Finally, a conclusion of the paper is presented.

1 Introduction

Machine learning methods enable models to learn and predict future data from experience automati-
cally without being explicitly indicated, during which a huge amount of data is needed to train a good
model. Especially deep learning, a subset of machine learning but with numerous layers with each
layer provide an interpretation to the data it feed on. For a deep learning which has many layers and
parameters, it usually need millions of labeled data to train an accurate model.
In the past several years, for those cases where enough data can be achieved, we have succeeded
in training more and more accurate models using deep learning method. How good? For example,
the performance of the latest residual network[1] on ImageNet is better than human in recognizing
objects; Goggle’s Smart Reply[2] can take over 10 percent of all mobile response; Speech recognition
accuracy keeps increasing and has exceed manually typing now. [3]
However, those good performances are based on huge amount of labeled data. The truth is, there are
certain tasks and domains where labeled data is painstakingly to get such as medical images. As a
result, how to alleviate data scarcity problems is top ranking problems now.
That’s when Multi-task Learning and Transfer Learning comes into being. While the goal of tradi-
tional Machine Learning methods is to train a single model to perform our desired task, Multi-task
Learning and Transfer Learning broaden their eyes and combine other related tasks’ knowledge into
the target task based on the consumption that related tasks may share some common features and can
benefit from each other.
Biologically, we can see this process from human being. When learning new tasks, we often apply

∗Use footnote for providing further information about author (webpage, alternative address)—not for
acknowledging funding agencies.

Preprint. Under review.

our previous learned knowledge to our new challenge. For instance, a new born baby first recognizes
the faces of it’s parents and then uses this knowledge to recognize other objects.
Technically, in computer vision, for example, different objects may shares similar colors, strips, edges,
shapes recognition mechanism, which can offer extra information on other related tasks and improve
on their performances.
Multi-task Learning and Transfer Learning are both excellent at solving data scarcity problems,
currently, there are tremendous excellent papers of diversiform applications of these two learning
methods. As a result, it’s hard for beginners to choose suitable method when dealing with data
scarcity problems. That is the motivation of this paper–to be a navigation light on data scarcity
problem solving method. After reading the paper, people can get a general idea of which learning
method to use on their specific problem.
The remainder of this paper is organized as follows. Chapter two first points out the differences
between Multi-task Learning and Transfer Learning. Then illustrates both of them separately ac-
cording to several parts: definition, reason to chose the method, principle and structure, types and
issues. Chapter three introduce some classic language models widely used in Transfer and Multitask
Learning. Chapter four contains the details of applications in text, protein sequence and source code.
Chapter five is an overall conclusion about the paper.

2 Theory

Although both Multi-task Learning and Transfer Learning can solve data scarcity problem, they are
different in principle. See Figure1[1]. In Multi-task Learning, several tasks can be learn at the same
time. Every learning agent receives message from several tasks at once, and every task needs to be
learned. In Transfer learning, tasks can be divided into two parts: source task and target task. When
training source task, we know nothing about target task. After source task is trained properly, it can
be feed to learning agent to improve target task’s performance. We care most about the target task,
the attention on source and target task are not symmetric in Transfer Learning.

Figure 1: Comparison of Transfer Learning and Multi-task Learning structure [1]

Owing to the different principles, both learning methods have their own pros and cons. In Multi-task
learning, every model needs to be trained from scratch, which means a large amount of data and
time is required to get a good model. On the bright sight, the dynamic training method enables
models receive arbitrary number of tasks. What’s more, it can handle any task dependency graph (for
example, T1 can learn from T2, and T3 from T4 and T6). In contrast, Transfer Learning can only
learns T2 from T1.
In terms of Transfer Learning, it is more efficient and less data requirement. In practise, a pre-trained
model can be used as a source task, all needed to do is fine-tune the pre-trained model to fit the target
task.
To be more concrete, more details about Multi-task and Transfer Learning are elaborated at follows.

2.1 Multi-task Learning

2.1.1 What is Multi-task learning?

To start with, a definition of Multi-task Learning is given:

Definition 1. Given N learning tasks (Ti)
n
i=1 where all the tasks or a subset of them are re-

lated but not identical, multi-task learning aims to help improve the learning of a model for Ti by

2

using the knowledge contained in the n tasks. See Figure2

Figure 2: Multi-task Learning diagram [2]

For instance, there are 4 main accents in British English: Irish accent, Scottish accent, British accent
and Welsh accent. However, every accent data is not enough to train a good classification model. Is is
possible to improve the model performance if these 4 tasks are trained simultaneously? Yes. If these
4 tasks share some common features, the model may finds it easier to learn than trained isolately. In
this case, all tasks share the same audio recognition method, entity detection method and relation
extraction method. Thus, when N tasks share some identical basic features, train them simultaneously
may better than separately.

2.1.2 Motivation

Machine learning methods usually train a single model on the desired task then fine tune the model
until it achieves acceptable results. Although a good performance can be achieved in this way, they
may ignore some extra useful information, namely, the information from other related tasks. The
model of original task can generate better if it shares representations with other related tasks.
There are some mechanisms underlie Multi-task learning that make it an outstanding learning method:

• Data Augmentation:
Training multiple tasks at the same time means having multiple data source and implicitly
more data to train the model, which can help avoid overfitting and increase accuracy.

• Attention focusing:
If data is limited and high dimensional, it’s hard to decide which features are relevant to
the task. Having multiple tasks trained simultaneously may solve the problem by offering
additional evidence on the relativity of the features.

• Eavesdropping:
Some features F may learns more from task A but much less from task B. It may because
task A interact with F better or other features enhance the influence of task A. The accuracy
of task B can be increased by features F learned from task A.

• Representation bias:
Learning one task A suffers from overfitting, but learning task A and B jointly enables
the model to obtain a more generalized representation. Multi-task Learning can learn a
generalized, unbiased representation that suits for all related tasks.

Nowadays, Multi-task learning has achieves huge success in some domains, such as natural language
processing, speech recognition and computer vision. It’s a very promising domain and waits for us to
explore.

3

2.1.3 Two classic MTL structure for Deep Learning

So far we have introduced general idea and theoretical motivation of MTL, to be more concrete, let’s
have a closer look on its inside structure. In terns of Deep Learning, MTL is usually implemented
with either hard or soft parameter sharing structure.
Before we start, a few simple notations need to be introduced:
LetT1, T2, ...Tn be the set of tasks, each with Ti = (Xi, yi) data points and labels. Let M be the
neural network to be trained, with k layers and parameter set:

Θ(M) = (P1, P2, ..., Pk)

Each Pi can vary between tasks, therefore we can view it as being made up of parameters for each
task:Pi = (Pi1, Pi2, ..., Pik)
Each layer has its output, that we denote xi for Pi in general and xij for Pij for the task-specific one.
Hard and soft parameter sharing discussions are inspired from Ruder[2].

Hard parameter sharing
Hard parameter sharing is the most commonly used structure, all tasks share the same parameters
while keep several task-specific output layers.
Here, we fix the bottom Pi, for 1 ≤ i ≤ k − h(i.e.Pij = Pit,∀1 ≤ j, t ≤ n), and we train h specific
Pkj for all 1 ≤ j ≤ n.
Hard parameter sharing does a great job in reduce the risk of over-fitting. It’s easy to understand that
the model needs to find a proper representation for all tasks, the more tasks the model has, the more
general the representation is, the less over-fitting it coule be.

(a) Hard parameters sharing (b) Soft parameter sharing

Figure 3: Hard parameter and Soft parameter sharing diagram [2]

Soft parameter sharing
In soft parameter sharing, each task has its own model and parameters. To make parameters more
similar, the distance between parameters is regularization. Usually, we apply L2 norm ∆ to measure
difference of respective parameters.
This penalty is added to the overall loss to be optimized, at a certain rate λ:

L+ = λk
∑
i = 1n

∑
j, t = 1∆(Pij , Pit)

2.1.4 Categories

Multi-task learning is a branch of machine learning, based on the nature of the learning method,
MTL can be divided into several settings: multi-task supervised learning, multi-task unsupervised
learning, multi-task semi-supervised learning, multi-task active learning, multi-task reinforcement
learning, and multi-task online learning.
As mentioned above, Multi-task learning aims to improve performance of every single task by
leveraging the useful information contains among them. As a result, MTL requires every task or

4

most of them are related. To be more concrete, relatedness can be encoded in three aspects: feature,
parameter and instance.
Feature based models is based on the idea that different tasks share similar representations which can
be a subset of original features. Parameter based model aims to find task relatedness from model
parameters. Instance based model intends to construct the model for each task by instance weighting.
A detailed illustration can be found in Yu Zhang[3]

2.2 Transfer Learning

2.2.1 What is Transfer Learning?

The definition of Transfer Learning is as following:
Definition 2. Given a source domain Ds and learning task Ts, a target domain Dt and learning task
Tt, transfer learning aims to help improve the learning of the target predictive function fT (∆) in DT

using the knowledge in Ds and TS , where DS 6= DT , or TS 6= TT . See Figure4[4]

Figure 4: Transfer Learning diagram [4]

For example, If we want to build a model for sentiment classification on restaurant comments, we can
use a sentence classification model which is able to classify object and human description properly as
a pre-trained model. A satisfying model can be trained only by fine-tune the pre-trained model. As
we can see from the example, Transfer Learning aims to leverage the knowledge in pre-trained model
to new related task or domain to speed up the training phase and lower the requirement of data.

2.2.2 Motivation

Traditional Machine Learning methods perform bad when there is no enough data for our target
task or domain. It also breaks down when training and testing data doesn’t have same features or
distribution. In such cases, we have to find more labeled data or rebuild model from scratch for latest
collected data. The truth is, it’s time-consuming or even impossible to collect massive labeled data
and rebuild the model. As a result, Transfer Learning comes into being. It makes transfer knowledge
from one domain to another possible.
Transfer Learning has been widely used in some language modeling models such as Text, Protein
Sequence and source code. More details can be found at chapter 3.

2.2.3 Deep Transfer Learning

In recent years, Deep Learning has been used in many fields such as text generation, image
recognition, voice assistant and achieve huge success. However, the training time and labeled data
required to train the model for the deep learning system is beyond imagination. Since there are
already various well developed deep learning networks in some domains, why not share those
existing networks with other new tasks? These pre-trained models are the backbone of our deep
transfer learning method.
The important feature of deep learning model is the hierarchical representation of layers, which

5

means different layers learn different features. After some operations(usually pass through Fully
Connected layers) the self studied layers are connected to a last layer to get the final output. The
characteristic of this layer structure enables us to treat the pre-trained model without last several
layers as a fixed feature extractor for other tasks.

Figure 5: fine-tuning diagram [5]

As we can see from Figure 5[5], the key point of fine tuning the pre-trained model is to keep the
parameters of the stable layers and only update the last several layers to fit the new task.
Then how to decide which layers to keep and which layers to fine tune? In practice, fine tune strategies
depends on different tasks:
Figure 6[5] is a visual summary of fine-tune layer chosen methods.

Figure 6: visual summary of fine-tune layer chosen methods [5]

The entire model is divided into 2 parts, the upper bigger square contains convolution layers, and the
bottom square stands for fully connected layers.
Quadrant1: when we have big dataset and small data similarity, we should train model from scratch
since we have enough data to fit the new task. However, in practice, using a pre-trained model to
initialize the parameters can be helpful.
Quadrant2: There are large dataset and the data is similar to pre-trained model. It is the best
situdation. Because of the large amount of data, we can train a model from scratch without worrying
about overfitting, but owing to the similarity of those two dataset it is time efficient to use the
pretrained model. As a result, train some convolutional layers plus Fully Connected layers should be
enough.
Quadrant3: Small dataset and different data. Everything is not good. The strategy is to find the
balance between frozen layers and train layers, although it’s hard. If we train whole layers, the
model will overfit; if we train only last several layers, it will learn nothing. Perhaps we can use data
augmentation methods to enrich data.
Quadrant4: For small, data related dataset, the best choice is just modify last several fully connected

6

layers, run the pre-trained model as a fixed feature extractor.

2.2.4 Categories

Based on the situation of source task and target task, transfer learning can be categorized into 3 types:
Inductive TL, Transductive TL and Unsupervised TL. Figure 8 is a reference table of those 3 Transfer
learning methods:

Figure 7: Transfer Learning categories [6]

The above three learning methods can be further divided into four cases based on what knowledge
could help improve performance for target domain or task, including:
Instance Transfer: Reusing knowledge from source domain to target would be helpful. However, in
normal scenarios it can not be used directly. Instance transfer assumes that some data in source task
can be reused in target task by re-weighting. The instance weight would be high for those similar
data, and low for those dissimilar one.
Feature Transfer: It tries to minimize the domain divergence and reduce transport error rate by
finding a suitable representation.
Parameter Transfer: This method is based on the assumption that related tasks or domains share
some parameters. The knowledge can be transferred into new task by sharing those parameters.
Relation-Knowledge Transfer: It assumes data relation between source and target task is similar.
Thus, what it tries to do is mapping relational knowledge between source and target task.
The following table[6] summaries the algorithms of Transfer learning method and corresponding
cases:

Figure 8: algorithms of Transfer learning method and corresponding cases

2.3 Issues

Both MTL and TL methods suffer from negative transfer. It means after knowledge transformation
the performance of learning doesn’t make any improvement but hurts in target domain. As for MTL,
it assumes most of the tasks are closely related. However, each task might not be closely related to all
of the available tasks. As for TL, it happens when source task is not sufficiently related to the target
task or the representation of source and target task is not learned properly. How to avoid negative
transfer is an important topic and can’t get enough attention in the future.

3 General models for NLP

In this chapter, we focus on several landmark models in language modeling. A language model is a
probability distribution over sequences of words. When given a corpus of tokens x = (x1, ..., xT),
the goal of language modeling is to estimate the joint probability P(x), which can be factorized as

7

P(x) =
∏
T P(xt|x<t). The higher the probability is, the more likely the sequence of x is. Then the

problem can be reduced to the estimation of every conditional factor. Based on the difference of
factor encoding methods, language modeling can be divided into multiple categories.

Figure 9: Categories of Language Modeling

As shown in figure9, based on the released time, I divide the models into two parts: Classic Approach,
which are designed before 2016, and Modern Approach. This chapter is constructed exactly as the
structure of Figure9 . The models marked in blue will be covered in more detail.

3.1 Classic Approach

3.1.1 Word2vec

The main task of word2vec is to learn high-quality word vectors from massive data sets with many
words. Although the effort of finding an appropriate word representation has a long history, such
as architecture of Neural Network Language Modeling(NNLM) [7], tf-idf [8] and Latent Semantic
Analysis[9], none of those proposed models got a modest dimensionality of word vectors between 50
and 100 successfully after trained on more than a few hundred of millions of words.
Word2vec simplifies neural network by removing the non-linear layer, given the concern about
minimize computational complexity. Two models are proposed in this paper[10] named CBOW
model and Skip-gram model. As shown in Fig10.
CBOW aims to predict the word by the context. That is to say it maximizes the probability of the
target word by looking at the context. While Skip-gram predict the current word based on context. At
the last step of training process, we need to use softmax on the product of two word vector matrix[11]
with the size of N*D (N is the number of vocabulary, D is feature dimention) to determine which
words are chosen and back propagate to update the parameters. When data sets grow and the amount
of vocabulary soars, it seems to be impossible to train the model. As a reult, word2vec propose 2
optimise methods: hierarchical softmax and negative sampling.[11].
It turns out Word2vec has been used to outperforms many previous SOTA tasks such as SemEval-2012
Task2[12], sentiment analysis[13] and paraphrase detection[14]. However, owing to the moving
window-structure, word2vec can only see partial infornation instead of global for word prediction.
Besides, word embedding learned from word2vec is context-independent, which means if one word
has several different meanings, those embeddings will all be the same, which shouldn’t be the case.

3.1.2 Glove

Glove[15] proposed a novel concept called co-occurrence counts matrix to take global information
into consideration. The counts matrix can be denoted by X, whose entries Xij tabulate the number
of times word j occurs in the context of word i. Let Xi =

∑
Xik be the number of times any word

8

appears in the context of word i. Finally,let Pij=P(j|i)= Xij/Xi be the probability that word j appear
in the context of word i. Given some insight on the co-occurrence ratio F(wi, wj , wk) = Pik

Pjk
, the

ratio can be small, large, which means k is related to either i or j, or equal to 1, which means it
either related to i and j or related to neither of them. Glove tries to design a goal function J to fit
the trend: J=

∑V
i,j=1 f(Xij)(wTi wj + bi + bj − logXij)

2, and minimize the goal function to achieve
word vector.

Figure 10: Architecture of CBOW model and Skip-gram model [10]

Glove performs better than skip-gram and CBOW models on word anaog tasks, word similarity tasks
and Name-Entity Recognision task accroding to [15]. However, Glove also suffers from content
insensitivity.

3.1.3 Fasttext

Fasttext model is designed by Facebook AI team, it can be viewed as another word embedding method
which is an extension of the word2vec model. Instead of learning vectors for words directly, fastText
represents each word as an n-gram of characters. For example, take the word "apple" with n =3, the
input is divided in several subinput as <ap,app,ppl,ple,le>. The reason why it is designed in this way
is that the decomposition helps capture the meaning of shorter words and allows the embeddings to
understand suffixes and prefixes. As a result, fasttext can handle rare word, so even if a word wasn’t
seen during training, it can be broken down into n-grams to get its embeddings.For instance, if input
has a word "uncomfortable" which the model never seen before, it can break the word into prefixes
’un’ and ’comfortable’to help embedding. While Glove and word2vec can’t provide word vector
representation which is not in dictionary.
The process of fasttext is similar to CBOW, both of which are consist of input layer, hidden layer
and output layer. What different is the input pf CBOW is the one-hot embedding of context of target
word, while the input of fasttext is word embedding of all words in dictionary and their corresponding
n-gram feature. More detail can be found at Github Page.

3.2 Modern Approach

Most models listed below this category except GPT2 are semi-supervised models using a combination
of unsupervised pre-training and supervised fine-tuning. The advantage of unsupervised learning is
that it can learn a universal representation that transfer to a wide range of tasks with little adaption.
And the data domain of training tasks and target tasks don’t need to be the same. The procedure can
be deployed in two stages: First, training the language model on unlabeled data to learn an initial
parameter of neural network model, then adapting these parameters got from the previous stage to a
target task using corresponding labeled data.

9

As we mentioned above, this is the typical structure of Transfer Learning. However, these models
can combine with Multi-task learning to preform a better performance. For example, Xiaodong
Liu[16] designed a Multi-task Deep Neural Network(MT-DNN) structure, as shown in Figure11, with
two stage. The first stage is pre-training of Lexicon Encoder and Transformer Encoder, here applys
BERT technique by masking input sentences on both Lexicon encoders and transformer encoder.
The second stage is fine-tuning, it receives contextual embedding from first stage, and go through
different sub-flow to learn representation for each specific task. Mini batch based stochastic gradient
descent (SGD) is applied. MT-DNN computes the loss across different task and applying the change
to the model at the same time.

Figure 11: Architecture of the MT-DNN model for representation learning [16]

Main difference from modern approach to classic approach is that modern approach can generate
different word embeddings for a word that captures the context of a word. For example, the
embeddings of word ’bank’ are different in sentence "He went to bank yesterday" and "The girl is
playing near the bank" because of their context.
Based on model structures, we divide modern approach models into two parts: models based on
Recurrent Neural Network(RNN) and Transformer(attention) based models.

3.2.1 Module Category

Word2vec, Glove and Fasttest can only allow single context independent representation for each seen
word, it’s very challenging to ideally model polysemy and complex syntax and semantics relationship.
RNN based models such as Elmo and Cove[17] make use of the time ordered characteristic in recurrent
neural network to keep the position information and generate context dependent embeddings.
Translation based models such as BERT, XLNet, GPT2 refines RNN based models by adding attention
mechanism, which allows longer range sentence prediction, and they also increase efficiency. Details
are covered in the following chapters.

3.2.2 Elmo

In Elmo, a bi-directional LSTM model is designed to generate word vectors. It improves on the
linear combination method of traditional bi-directional models, which much enhance the performance.
Belinkov[18] shows combining internal states in LSTM enrich word representations. To be more
specific, higher-level LSTM states capture context-dependent aspects of word meaning while lower-
level states are good at modeling syntax information. Elmo also benefit from subword units by

10

convoluting on character, which is useful when handling out of vocabulary(OOV) problems. Besides,
Elmo takes full advantage of access to tremendous amount of data, and train the bi-LSTM model on
a corpus with approximately 30 million sentences. All of them make Elmo outstand from previous
models.
Let’s have a closer look at the model detail. In traditional bi-directional language model, illustrated in
Figure12, given a sequence of the N tokens (t1, t2, ..., tN), the task of feed forward part is computing
the probability of sequence p(t1, t2, ..., tk) reference to the history (t1, t2, ..., tk−1):

p(t1, t2, ..., tN) =
∏N
k=1p(tk|t1, t2, ..., tk−1)

Backward part is similar to forward part, except it runs over the sequence from back to the front,
predicting previous token given future ones:

p(t1, t2, ..., tN) =
∏N
k=1 p(tk|tk+1, tk+2, ..., tN)

Traditional bi-LSTM combines both forward and backward equation, jointly maximize the log
likelihood of the combination formulation:∑N

k=1(logp(tk|t1, t2, ..., tk−1; Θx;
−−−−−→
ΘLSTM ,Θs + logp(tk|tk+1, tk+2, ..., tN ; Θx;

←−−−−−
ΘLSTM ,Θs)

Θx and Θs are parameters for token representation and softmax layer in both forward and backward
direction. ΘLSTM is separate parameters for LSTM in each direction.
Elmo does some improvement on the combination of forward and backward propagation representa-
tion. Instead of simply add them together, Elmo applies linear combination of those bi-LSTM layers.
Here, ~hLMk,j means a content dependent representation at each position k,layer j(j=1,...L).~hLMk,L means

the last layer of token k, which can be used to predict next token tk+1 with a Softmax layer. ←−h
LM

k,L
is similar meaning but for back propagation process. For each token tk, 2L+1 representations are
computed:

Rk = xLMk ,~hLMk,j ,
←−
h
LM

k,j |j = 1, ..., L = hLMk,j |j = 0, ..., L

where hLMk,0 is token layer and hLMk,j = [~hLMk,j ,
←−
h
LM

k,j] for each bi-LSTM layer.
Before down-stream fine-tuning stage, Elmo integrates all layers in each token Rk into one single
vector ELMotaskk :

ELMotaskk = E(Rk; Θtask) = γtask
∑L
j=0 s

task
j hLMk,j

In the equation above, stask are softmax-normalized weights and γtask is scalar parameter to scale
the entire ELMo vector. Sometime it also beneficial for layer normalization[19] when each bi-LSTM
layers has different distribution.

Figure 12: Architecture of a Bi-LSTM layer ELMo [19]

In some cases, using the pre-trined parameters ELMok leads to significant drops in perplexity
and increase in down-stream performance. In TagLM[20] it combines word embedding and Elmo

11

embeddings together and achieve better results. This type of transfer learning techniques called
feature-based learning. [21]

As shown in Mattew’s paper [22], Elmo performs well in many applications. Figure13 shows
performance of ElMo across six benchmark NLP tasks.
First line is Question answering task on the Stanford Question Answering Dataset (SQuAD). After
adding ELMo to the baseline model, test set F1 improved by 4.7% from 81.1% to 85.8%, a 24.9%
relative error reduction over the baseline.
Second line is Textual entailment task which determins whether a “hypothesis” is true, given a
“premise”. The Stanford Natural Language Inference (SNLI) corpus is used. Overall, adding ELMo
to the ESIM model improves accuracy by an average of 0.7% across five random seeds. A five
member ensemble pushes the overall accuracy to 89.3%, exceeding the previous ensemble best of
88.9%.
Third line is Semantic role labeling task, when adding ELmo model into the task, the F1 score
increases 3.2% from 81.4% to 84.6%.
Fourth line is Coreference resolution task, adding ELMo improved the average F1 by 3.2% from
67.2% to 70.4%.
Fifth line is Named entity extraction task trained on Reuters RCV1 corpus tagged with four different
entity types (PER, LOC, ORG, MISC). ELMo enhanced biLSTM-CRF achieves 92.22% F1 averaged
over five runs, which is 2.02% improvement
The last line is Sentiment analysis task in the Stanford Sentiment Tree- bank.Replacing CoVe with
ELMo in the BCN model results in a 1.0% absolute accuracy improvement over the state of the art.

(a) Test set comparison of ELMo enhanced neural models with state-of-the-art
single model baselines across six benchmark NLP tasks.

(b) Nearest neighbors to “play” using GloVe and the context embeddings from
a biLM.

Figure 13: ELMo performance construction table [22]

Figure13(b) compares the ability to solve polysemy of both GloVe and Elmo. We can see Elmo
successfully generate two embeddings for word ’play’ for "play sport" and "play music" seperately,
which Glove can’t.

Although Elmo performs better than previous tasks to some extend, RNN structure suffers from
longer sentences memorization and gradient explosion and vanish problems.

12

3.2.3 Transformer

Although pre-training helps LSTM capture linguistic information, the structure of LSTM models
restricts the prediction ability to a short range. Besides, ELmo also very inefficient and hard to execute
parallelly since the model can’t proceed to tk+1 until tk is calculated. As a result, attention comes into
being by discarding RNN structure and only use attention mechanism. Attention mechanism can both
compel sequence model and transduct model without dependent on distance in the input or output
sequence. Before Transformer[23] is released, there are models conjunct attention mechanism with
RNN[24]. Transformer is the first model relies entirely on self-attention to compute representations
of its input and output. The structure of Transformer is illustrated in Figure14.

Encoder As shown in Figure14, encoder is made up with several components: 1.input and
positional embedding 2.Multi-head attention 3.add and layer normalization 4.feed forward layer. The
function and principle are as follows:

1. Input and positional embedding
Normal embedding method in self-attention can not take position information into
consideration(More detail in multi-head attention part). For example, the word embeddings
of "Germany" in the sentences "The flight from Germany to China" and "The flight from
China to Germany" are the same, which should not be the case. As a result, position
information should be added into embedding. That’s how positional embeddings come into
being. The final Token vector is the sum of Input embedding and Positional embedding.
More detailed are covered in github[25].

2. Multi-head attention
Figure 15 shows the structure of multi-head attention. We can observe from the figure that
multi-head is consist of h scaled dot-product attention. To make it more clear, let’s first
introduce dot-product attention.

• Scaled dot product attention
can be viewed as a information extraction process. When extract information for one
single token tn, the corresponding query vector is qn = Wqtn. Tokentn prepares for
its own answer (key,value), computed as:

kn = Wkxn
vi = Wvxi

Notice that key and value generation is irrelevant to query.
The Correlation coefficient of every token tn to token ti can be illustrated as :

score(qn, ki) =< qn, ki > /
√
d, i = 1, 2, ...L

ani = expscore(qn,ki∑L
j=1 exp

score(qn,kj

<,> is dot product operation, d is vector dimention. The reason why the dot product
need to be divided by

√
d is to avoid the product lands in saturation area.

The new vector of token tn is:

t′n =
∑L
i=1 tni ∗ vi

Mask is an optional operation here. If the length of sequence is shorter than batch
length, <PAD> should be filled at the end of sentence token. Before proceeding to
correlation coefficient calculation, those placeholder tokens should be masked.
In practise all tokens are generated simultaneously as shown in the right of Figure15.
Queries and keys matrix are of dimension L(Sentence length) * dk(vector features
dimention), and values of L * dv . The new token vector [t′1, ..., t

′
L] can be expressed as :

Attention(Q,K, V) = softmax(QK
T

√
d
V)

13

• Multi-head attention
Multi-head attention allows the model to jointly attend to information from different
representation subspaces at different positions. So that the model can integrate multiple
aspects of information. With a single attention head, averaging inhibits this:
MultiHead(Q, K, V) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i)

3. add and layer normalization
Layer normalization is similar to Batch normalization[26], the difference is batch
normalization normalize on features level, but layer normalization normalize on batch level.
Add operation references to resNet[27] It adds original token to generated tokent′ at each
layer to avoid input degeneration.

4. feed forward layer
The main goal of feed forward layer is to project the vector generated from multi-head
attention to a larger space, which is easier to retrieve valuable information, and then projected
into it’s original space. SVM[28] also utilizes similar principle to project feature to higher
dimensional space to make features linear separable.

Decoder Decoder is similar to encoder, except the multi-head attention is masked, which means
when predicting token tk it can only use information from previous tokens [t1, ..., tk−1]. And
decoder also inserts a third sub-layer, from which encoder stack pass over the K,V matrix it learned
to decoder.

The Linear layer is a simple fully connected neural network that projects the vector produced by the
stack of decoders, into a much larger vector called logits vector.

Figure 14: Architecture of Transformer [23]

14

For example, the size of training corpus is 10,000, which means the logits vector is 10,000 cells wide
– each cell corresponding to the score of a unique word. That is the way to interpret the output of the
model followed by the Linear layer.

The softmax layer then turns those scores into probabilities. The cell with the highest probability is
chosen, and the word associated with it is produced as the output for this time step.

One thing worth paying attention to is Transformer is not a Language modeling model. Because
in decoder it receives the whole encoding of original sentence from encoder, which can be seen
as a cheat when generating contexts. However, either encoder or decoder method can be applied
in language model since they are good at handling long-term dependencies in text, compared
to other alternatives such as neural network. BERT upgrade its performance upon encoder, and
CPT,CPT2,Transformer XL, XLNet refine the decoder part.

3.2.4 BERT

Elmo,GPT,GPT2,Transformer XL are all unidirectional language models, which means they can only
attend to previous tokens in self-attention layers. As a result, they perform not quite satisfying when
fine tuning token-level tasks such as question answering, where context from both directions are
crucial.
BERT(Bidirectional Encoder Representations from Transformers)[29] is the first model to learn
bidirectional presentation from unlabeled data in pretraining phrase by jointly conditioning on both
context from left and right, after which the model can be fine tuned by just adding one extra output
layer for a wide range of tasks. BERT achieves that by using "masked language model" as input and
"next sentence prediction" task, which offers text-pair representations.

Figure 15: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.[29]

Pre-training In Pre-training, the model is trained by unlabeled data over different tasks. BERT
uses Multi-layer bidirectional encoder based on encoder from Transformer[23].

Input/Output representation : BERT supports both single sentence and pair sentence <Ques-
tion,Answer> representation in one token. For single sentence representation, Elmo uses WordPiece
embeddings[30] which has 30,000 token vocabulary. The first token of each sentence is always
a special classification token called [CLS], which encodes the overall information of the whole
sentence. The final hidden state of [CLS] is used for classification tasks. For pair sentence
representation, BERT separates them with a special token [SEP], besides, it also has one extra
embedding to identify whether the sentence belongs to sentence A or sentence B. The final hidden
layer of [CLS] is also used for further tsks. As shown in Figure 16, the input representation is
consisted by summing 3 tokens:token embeddings, segment embeddings and position embeddings.

15

Figure 16: BERT input representation.[29]

Masked LM: Bi-directional information can’t be acheived by simple concatenation of left-to-right
and right-to-left as used in BERT. However, conditioning on both direction would let each word see
itself. In order to solve this dilemma BERT masks a certain percentage of input token randomly
and predict the [MASK] tokens. The shortcoming of the approach is there are mismatchs between
pre-training and fine-tuning process, bacause there is no [MASK] tokens in fine-tuning. To alleviate
the weakness, the strategy is 80% of the time replace the word with the [MASK] token, 10% of the
time replace the word with a random word and 10% of the time keep the word unchanged. The final
hidden state of masked token is fed into a softmax function over the whole vocabulary.

Figure 17: Illustrations of Fine-tuning BERT on Different Tasks.[29]

Figure 18: GLUE Test results [29]

16

Next sentence prediction: In order to extract the relation between sentence, next sentence prediction
task is implemented by BERT. When trianing the task, 50% cases sentence A and B are sequential,
50% cases sentence A and B have no relationship. For example:

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]
Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight not birds [SEP]
Label = NotNext

The task is a huge success by achieving 97%-98% accuracy.

Fine-tuning In fine-tuning, all parameters got from pre-training are fine-tuned using labeled data
from downstream tasks. Figure17 is an illustration of BERT fine-tuning tasks.
For Simple Simplification taks(b), we proceed the special token [CLS] at the first position to a
softmax layer and uses the output for fine-tuning.
For Sentence Pair classification tasks, we add segmentation tokens in pre-triaining and also uses
softmax on [CLS] for futher fine-tuning.
For Single Sentence Tagging task(d) such as name entity recognision, except [CLS] and [SEP],
all tokens generate a new tag. In this case, B-PER means the Beginning of a PERson. BERT use
the output tags to fine-tuning. Question Answering task(c) is also a token-level task as (d) . It in-
put a question and corresponding paragraph where answer is contained. It seeks answer in output tags.

(a) SQuAD 1.1 results (b) SQuAD 2.0 results

(c) SWAG Dev and Test accuracy

Figure 19: BERT performance construction table[29]

Experiments BERT is conceptually simple and also empirically powerful. Figure 18 shows the
examine result on GLUE, we can see BERT model obtains an accuracy score of 80.5, compared to
OpenAI GPT, which obtains 72.8 as of the date of writing. Figure 19(a) is the result on Stanford Ques-
tion Answering Dataset (SQuAD v1.1), which is a collection of 100k crowd sourced question/answer
pairs. The task is to predict the answer text span in the passage given a question and a passage. We
can see BERT model outperforms the top ensemble sys- tem in terms of F1 score.
Figure 19(b) is the extension of SQuAD 1.1, it makes the problem more realistic by avoiding short
answers. We can see from the table that a +5.1 F1 improvement over the previous best system.

17

Figure 19(c) test accuracy on Situations With Adversarial Generations (SWAG) dataset, which con-
tains 113k sentence-pair completion examples that evaluate grounded common- sense inference.
The results shows BERT outperforms the authors’ baseline ESIM+ELMo sys- tem by +27.1% and
OpenAI GPT by 8.3%.

3.2.5 GPT

GPT[31] consists of two stages. The first stage is using masked multi-head-attention model(same as
Transformer) to pre-train unlabeled data, this is followed by adapting a discriminative task on the
model to fine-tuned labeled data.

Unsupervised pre-training Just like other language modeling method, the loss function of GPT is
also the log probability of sentence generation:

L1(U) =
∑
i logP (ui|ui−k, ..., ui−1; Θ)

where k is the size of context window. Θ is the parameters of the neural network the model uses.
Note that GPT only capture uni-directional information.
Context tokens first go through a multi-headed self-attention layer followed by position-wise feedfor-
ward layers to produce an output distribution over target tokens:

h0 = UWe +Wp

hl = transformerblock(hl−1∀i ∈ [1, n]
P (u) = softmax(4nW

T
e)

where U is context vector, n is layer number, and We is token embedding matrix Wp is positional
embedding matrix.

Supervised fine-tuning A sequence of input tokens x1, ..., xm are first passed through pre-trained
model to obtain the final transformer block’s activation hml , which is fed into a linear output layer
added in fine-tuning stage with parameters Wy to predict final output y:

P (y|x1, ..., xm) = softmax(hml Wy)

The corresponding loss function is:

L2(C) =
∑
x,y logP (y|x1, ..., xm)

GPT optimises the overall loss function:

L3(C) = L2(C) + λ ∗ L1(C)

where λ is the weight of loss function L1 .

3.2.6 GPT2

GPT2[32] demostrates there is no need to fine-tune on a specific model if the model is trained on a
new dataset of millions of webpages called WebText. GPT2, can be seen as a extension of GPT, is a
1.5B parameter Transformer which achieves SOA results on 7 out of 8 datasets now.
The main idea of GPT2 can be expressed as follows: The goal of language modeling is to estimate
the probability of P (x) =

∏n
i=1 p(sn|s1, ..., sn−1), which can be rewritten as p(output|input). To

perform a specific task, the model should not only condition on input but also on the task, which
mean the formula should like this:P (output|input, task). The task can also be extracted as a vector
just as input and output. GPT2 holds the idea that supervised objective is the same as unsupervised
objective but only evaluated on a subset of sequence. For example, if the input sentence is : “The
translation of word Machine Learning in Chinese is Machine Learning” , the model can learn
translation task and information retrieval task simultaneously. The problem becomes whether GPT2
is able to, in practice, optimize the unsupervised objective to convergence. As a result, GPT2
speculates that a language model with sufficient capacity will begin to learn to infer and perform the
tasks demonstrated in natural language sequences by unsupervised learning.
There are several changes compared to GPT model. First, the choice of training data set is different.

18

GPT2 collects data from many different domains by web scrapes, which contains over 8 million
documents for a total of 40GB text. Second, it changes the strategy for OOV problem. Since
byte-level embedding is not as good as word-level embedding, GPT2 uses a compromise method
proposed by Sennrich[33] which only split rare word during training. Last but not least, the model
structure is modified.

Figure 20: Zero-shot results on many datasets. [32]

Figure 21: The 30 most confident answers generated by GPT-2 on the development set of Natural
Questions sorted by their probability according to GPT-2.[32]

GPT2 achieves state-of-the-art scores on a variety of domain-specific language modeling tasks. GPT2
is not trained on any of the data specific to any of these tasks and is only evaluated on them as a final
test; this is known as the “zero-shot” setting. Figure20 is about language modeling results, note that
PPL is the abbreviation for Perplexity, the fewer the value is, the higher possibility a sentence has,
the better the model is. BPC means bits-per-character, it is proposional to PPL. ACC standes for
accuracy. Large improvements are noticed on small datasets such as Penn Treebank and WikiText-2
which have only 1 to 2 million training tokens and also on large datasets created to measure long-term
dependencies like LAMBADA and the Children’s Book Test. However, GPT2 is still worse than
prior work on the One Billion Word Benchmark. This is likely due to 1BW’s sentence level shuffling
removes all long-range structure.

19

As for question answeing tasks, they are trained on Natural Questions dataset[34],which is a promising
resource to test this more quantitatively. GPT2 has an accuracy of 63.1% on the 1% of questions it
is most confident in. However, the performance of GPT2 is still much, much, worse than the 30 to
50% range of open domain question answering systems which hybridize information retrieval with
extractive document question answering.

3.2.7 Transformer XL

TransformerXL[35] is an improvement model on Transformer, which learns dependency beyond
a fixed length in sequence and resolves context fragmentation problem. Before we proceed to the
mechanism of TransformerXL, let’s have a refresh on the defect of Transformer model.

Segment-Level Recurrence with State Reuse As mentioned above, there is an optional mask
operation in the Transformer attention part, which cuts or pads one sentence segment into a certain
length. By doing so Transformer transfers all the input sequence into many fixed length segments,
without any information flow across segments. However, it may leads to some problems:
First, the model cannot capture any longer-term dependency beyond the predefined context length.
Besides, each fixed length segments are generated by consecutive symbols inside the segment
without referring to any adjacent segments. Hence, the model neglects potential necessary contextual
information which are essential to predict the several beginning words, leading to inferior performane.
For example, if a long sentence is cutted into a half, the first several words in second segment will be
hard to predict. We refer to this kind of problem as context fragmentation, as shown in figure22(a).

Figure 22: Illustration of the vanilla Transfer model with a segment length 4.[32]

During each step in evaluation stage, the segment is shifted to the right by only one position. and
the whole segment needs to be processed from scratch. As we can see from Figure21(b), when
predicting x6, [x2, x3, x4, x5] need to be calculated. Then when predicting x7, we need to according
to [x3, x4, x5, x6], which doesn’t make use of knowledge learned before. This kind of evaluation
procedure is extremely expensive, can we save the output from the previous segment and utilize that
in the next segment evaluation?

Figure 23: Illustration of the TransferXL with a segment length 4.[35]

20

That is exactly the main idea of TransformerXL. During training, the hidden state sequence calculated
at previous segment is fixed and cached to be reused as a extra information for the next new segment.
As shown in Figure 23(a). In evaluation phase, when computing x12, [x11, ..., x3] don’t need to be
recalculated. Detailed formula can be seen in Zihang’s paper[35].

Relative Positional Encodings Transformer uses absolute position in the segment for encoding.
However, due to reuse of hidden states, TransformerXL could get confused by which segment position
the index refers to. As a result, TransformerXL needs to think up a new encoding method to keep the
positional information. The detail implementation could be find in kim’s github[36]

3.2.8 XLNet

XLNet[37] can be seen as an improvement on BERT, which neglects dependency between masked
positions and suffers from pretrain-fintune data discrepancy, by maximizing the expected probability
over all permutations of factorization order. Thanks to permutation operation, XLNet can also
support bi-directional context detection. Besides, XLNet integrates the segment-level recurrence
mechanism from Transfer-XL into pretraining.

Shortcoming of BERT BERT suffers from discrepancy caused by [MASK] (introduces at section
3.2.3), and oversimply assumes predicted tokens are irrelavent. To understand that, we first introduce
the concept of Autoregressive model(AR) and Autoencoder model(AE):
In AR language model, when there is a text sequence x=(x1, ..., xT), AR will factorize the
sequence likelihood into a forward product P (x) =

∏T
t=1 p(xt|x<t) or a backward product

P (x) =
∏1
t=T p(xt|x>t). The task of AR model is maximize the likelihood of those product:

maxθlogpθ(x) =
∑T
t=1 logoθ(xt|x<t) =

∑T
t=1 log

exp(hθ(x
T
1:t−1e(xt)∑

x′ exp(hθ(x
T
1:t−1e(x

′))

where hθ(x1:t−1 denotes a context representation encoded by RNN or Transformer. e(x) is the
embedding of x. Owing to the structure of AR language model, it can only encode a uni-directional
context either forward or backward, which is not effective at bi-directional context modeling. Many
models are based on AR language model such as GPT,GPT2,TransformerXL and XLNet. However,
XLNet solves this problem by permutation operation.
AE language model aims to reconstruct original sentence sequence from corrupted input. An
example of AE language model is BERT, who try to recover the original tokens from masked input.
The structure allos AE language model to see the whole sentence sequence. In other words, AE
supports bidirectional context for reconstruction. The expression to reconstruct masked tokens x̄
from corrupted input x̂ is:

maxθlogpθ(x̄|x̂) ≈
∑T
t=1mtlogpθ(xt|x̂) =

∑T
t=1mtlog

exp(Hθ(x)
T
t e(xt))∑′

x exp(Hθ(x)
T
t e(x

′))

where mt = 1 indicates xt is a masked token and Hθ is a transformer which maps a text sequence x
with length T into a sequence of hidden vectors Hθ(x) = [Hθ(x)1, ...,Hθ(x)T]

Notice that the expression in AE model uses Approximate equality sign ≈ instead of = in AR
model. It means BERT factorizes the joint conditional probability p(x̄|x̂) according to the
assumption that all masked tokens x̄ are constructed separately, which doesn’t make sense.
For example, if the masked token for the sentence "New York is a city" is New and York, then
they are correlated. By constract, AR model fits better since it’s not based on independence hypothesis.

Improvement on XLNet The mechanism makes XLNet integrates all the advantages of both AE
and AR model while avoiding their weaknesses are introduced as following:

1. Permutation
For a sequence of length T, there are T! different orders to perform a valid auto-regressive
factorization. For example, if T = 3, then the input sequence is x = x1x2x3 and there are

21

3!=6 sequence orders:

p(x) = p(x1)p(x2|x1)p(x3|x1x2) => 1− > 2− > 3
p(x) = p(x1)p(x2|x1x3)p(x3|x1) => 1− > 3− > 2
p(x) = p(x1|x2)p(x2)p(x3|x1x2) => 2− > 1− > 3
p(x) = p(x1|x2x3)p(x2)p(x3|x2) => 2− > 3− > 1
p(x) = p(x1|x3)p(x2|x1x3)p(x3) => 3− > 1− > 2

Notice that p(x2|x1x3) represents for the probability of x2 being the second word when
the first word is x1 and the third word is x3. The sequence follows the probability is the
dependency relationship. For example, 1->3->2 means the model guess the first word, and
based on first word guess the third word, then the second one. We can see the permutation
only permutes the factorization order, not the real sequence order, which means it keeps the
original sequence order. It is achieved by masking mechanism in Transformer. If model
parameters are shared across all factorization orders, theoretically, the model will learn to
gather information from all positions on both sides.
Calculating T! possibilities is very time consuming. Hence, in practise we only randomly
select t partial samples in T! permutations.

Figure 24: Illustration of the permutation language modeling objective for predicting x3 given the
same input sequence x but with different factorization orders. [37]

Let us formalize the idea of permutation. ZT represents for all possible permutation of
sentence of length T. Then lst zt and z<t be the t-th element and first t-a elements of one of
permutations z ∈ ZT .
The expected permutation language modeling can be expressed as:

maxθEzZT [
∑T
t=1 logpθ(xzt |xz<t)]

Basically, the expression means choose the most possible factorization order by adding the
likelihood p(x) according to factorization order.
Figure 24 provides an overall picture of permutation. The factorization order of the top-left
sub picture is 3->2->4->1, as a result, we can’t attend to other tokens when predicting x3.
As for bottom left sub picture, we can attend to all three other tokens.

2. Two Stream Self-Attention for Target-Aware Representation
While permutation solves bi-directional modeling problem, naive implementation with
standard Transformer doesn’t work. To be more specific, assume the input sentence is "I
like New York", and the permutation factorization order is z=[1,3,4,2], if we want to predict
z3=4, then according to formula:

22

pθ(Xz3 = x|xz1z2 = pθ(X4 = x|x1x3) = exp(e(x)Thθ(x1x3))∑
x′ exp(x(x

′)Thθ(x1x3))

pθ(X4 = x) means the prob of forth word being York. And translate the formula above into
natural language is : When the first work is I, the third word is New, what’s the possibility
of the York being the forth word.
We assume another permutation order z’=[1,3,2,4] and we want to get the pro of z3 =2:

pθ(Xz3 = x|xz1z2 = pθ(X2 = x|x1x3) = exp(e(x)Thθ(x1x3))∑
x′ exp(x(x

′)Thθ(x1x3))

It calculates the probability of York being the second word when the first word is I and the
third is New. Note that the above two formulas are the same, which does not make sense.
Since New York is a city and York New means nothing.
Notice the hidden layer hθ(xz<t) of Transformer network does not depend on the position
it predicts,i.e., zt. As a result, the same distribution is predicted regardless of the target
position, which is not able to learn useful representation like we mentioned above.
To avoid that, re-parameterize the next-token distribution to be target position aware:

pθ(Xzt = x|xz<t) = exp(e(x)T gθ(xz<t,zt))∑
x′ exp(e(x/)

T gθ(xz<t,zt))

where gθ(xz<t, zt)denotes a new representation, which additionally take the current
position zt as input.

The idea of target-aware representation gθ removes the uncertainty in target prediction, but
how to formulate gθ remains a unsolved problem. Notice that there are contradictory in
Transformer architecture: (1) gθ should only use position of target token zt but not the
context xzt , otherwise the word can see itself (2)to predict following tokens, gθ should also
encode context xzt to provide full contextual information.
To resolve such delimma, XLNet proposes two set of hidden representations, namely, two
streams:
The content representation: hθ(xz≤t) or abbreviated as hzt , which plays a similar role as
standard Transformer. It encodes both the context and xzt itself.
The query representation gθ(xz<t, zt) or abbreviated as gzt , which only has access to
contextual information xz<t and position zt .
Computationally, we initialize first query representation g(0)i as a variance w, and the content
representation as correspoding word embedding,i.e., h(0)i = e(xi). For each i self-attention
layer m = 1, . . . , M, each layer of query and content representation is:

g
(m)
zt < −Attention(Q = g

(m−1)
zt ,KV = h

(m−1)
z<t ; Θ) (query stream: use zt but not xzt)

h
(m)
zt < −Attention(Q = h

(m−1)
zt ,KV = h

(m−1)
z≤t ; Θ) (content stream: use both zt and

xzt)

where Q, K, V denote the query, key, and value in an attention operation as Transformer.
During fine-tuning, XLNet can simply drop the query stream and use the content stream
as a normal Transformer(-XL). Finally, the last-layer query representation g(m)

zt is used to
compute pθ(Xzt = x|xz<t)
Figure 25 shows the calculation process of two stream permutation model. Top-left graph is
attention calculation of Content Stream. Assuming the permutation order is 3->2->4->1,
then when we predict the token at first position, we can reference to all 4 word message.
Hence, KV = [h(0)1 , h

(0)
2 , h

(0)
3 , h

(0)
4], and Q=h(0)1 .

Bottom-left graph is process of Query stream calculation. Because Query stream doesn’t
know content of itself, KV=[h(0)2 , h

(0)
3 , h

(0)
4] and Q= g(0)1 .

sub-graph (c) is the whole process of two stream calculation: Let start from the bottom
to the top. h and g are initialized with e(xi) and W as mentioned above, then first layer
output h(0) and g(0) of Content Mask and Query Mask are generated, the second layer,third
layer...are all the same. Note that the first line of Content Mask is all red, which means the
first word can attend to all word in sentence(1,2,3,4), while Query Mask can’t attend to the
word itself, so the diagonal of the matrix is while.

23

Figure 25: (a): Content stream attention, which is the same as the standard self-attention. (b): Query
stream attention, which does not have access information about the content xzt) . (c): Overview of
the permutation language modeling training with two-stream attention.[37]

3. Partial Prediction
While there are many advantages in permutation language modeling, it is slow to
convergence due to the amount of possibilities. To reduce the difficulty, XLNet only predict
the last tokens in a factorization order. The reason is the last several tokens possesses the
longest context in the sequence given a certain factorization order.
XLNet divided the whole factorization order into two sub-sequences z≤c and z>c,
corresponding to non-target set and target set separately. A parameter K is introduced, 1

K
tokens will be selected for prediction.

4. Incorporating Ideas from Transformer-XL
XLNet integrate two main function from Tramsformer-XL, namely the relative positional
encoding scheme and the segment recurrence mechanism. Both of them are elaborated in
Transformer-XL

5. Modeling Multiple Segment
Many downstream tasks have multiple input sequence such as question answering.
Just like BERT, we choose two sentences, with 50% being continuous sequence and
50% dis-contiguous sequence. Then concat two segments as one sequence to perform
permutation language modeling. Specifically, the input to XLNet is similar to BERT: [A,
SEP, B, SEP, CLS], where “SEP” and “CLS” are two special symbols and “A” and “B”
are the two segments. There is a slight different from BERT, here CLC is put to the end.
Because self-attention calculation doesn’t need to take position into consideration since
BERT encode the position information to input vector. While XLNet only predict the last 1

K
tokens, it put CLS at the end to guarantee all message is covered.
There is one more different in BERT and XLNet, that XLNet uses relative segment encoding
while BERT adds an absolute segment embedding to each position of word embedding.
XLNet only cares whether two positions are within the same segment, instead of considering
which specific segments they are from. When i attends to j, the segment encoding sij is
used to compute an attention weight aij = (qi + b)Tsij , where qi is the query vector as in a
standard attention operation and b is a learnable head-specific bias vector. Finally, the value
aij is added to the normal attention weight.
Using relative segment encoding has two benefits. First, the inductive bias b improves
generalization. Second, it makes XLNet support fine-tuning on more than two input
segments, which is not possible using absolute segment encoding.

Experiments First experiment is tested on RACE dataset, which contains near 100K questions
taken from the English exams for middle and high school Chinese students in the age range between

24

12 to 18, with the answers generated by human experts. The average length of the passages in RACE
are longer than 300, which is significantly longer than other popular reading comprehension datasets
such as SQuADAs. we can see from the result table, XLNet outperforms the SOA model by 7.6
points in accuracy and also surpassed other models such as BERT and GPT. One possible reason for
that huge improvement maybe XLNet integrate Transformer-XL architecture which improves the
capability of modeling long text.

Figure 26: Comparison with state-of-the-art results on the test set of RACE [37]

For text classification task, as shown in figure 27, XLNet is evaluated on the following bench-
marks: IMDB, Yelp-2, Yelp-5, DBpedia, AG, Amazon-2, and Amazon-5. XLNet achieves better
performance on all considered datasets, reducing the error rate by 16%, 18%, 5%, 9% and 5% on
IMDB, Yelp-2, Yelp-5, Amazon-2, and Amazon-5 respectively compared to BERT.

Figure 27: Comparison with state-of-the-art error rates on the test sets of several text classification
datasets.[37]

4 Application

In this research paper, we include 3 modalities: text, protein sequence and source code, most of
which are based on the general models mentioned above. All of them use language modeling models
trained from self-supervised learning.

4.1 Text

4.1.1 Unsupervised Domain Adaption on Reading Comprehension

Tags:Reading Comprehension, Domain Adaption,general domain, Transfer Learning

• Background
In NLP study, Reading Comprehension(RC) is a widely studied topic since it makes
human-machine interaction more feasible. There are several datasets to train an end to
end deep neural network for Reading Comprehension such as SQuAD[38], CoQA[39]
and NewsQA[40]. Recently, Bert even performs better than human on SQuAD dataset.
However, in real world applications not all data are labeled. Therefore a performance gap
can be seen when transfering a model trained on source tasks to goal task.
Unsupervised domain adaption is a method to solve the generalization problem. It is used to
transfer knowledge from a labeled source domain to an unlabeled target domain. Before the
paper is released, there are few domain adaption tasks focus on Reading Comprehension,

25

However, they are only applied to small RC dataset, which is not helpful to generalize
representation.

• Model
The paper [41] concentrates on unsupervised domain adaption on RC datasets using Transfer
Learning based on BERT modeling model. The adaption method this paper proposes called
Conditional Adversarial Self-training(CASe). The method can be divided into two parts:
First, fine-tune BERT model on source domain, then, at adaption stage, it applies alternated
training strategy which consists of self-training and conditional adversarial learning.
The definition of text span based Reading Comprehension task can be describe as follows:
Given a M token paragraph P = <p1, p2, ..., pM> and q query Q=<q1, q2, ..., qL> with L
tokens, the corresponding answer A is <pas , pas+1 , ..., pae>. The goal is to find (as, ae),
which is the answer span of paragraph, satisfies the condition 0 ≤ as ≤ ae ≤M .
In unsupervised domain adaption task for Reading Comprehension, there are two data
domains: one source domain and one target domain. In source domain, we have n labeled
samples(xi, yi)

n
i=1 , where xi =(Pi, Qi) and label yi = (ai

s, ai
e). In target domain we only

have unlabeled samples (xj
′)
n′

j=1. The distribution of source domain and target domain are
different, our goal is to find model which can reduce the distribution shift and generalize
well between those domains.
CASe approach is illustrated in Figure below . As we can see from the graph, CASe if made
up with 3 components: a BERT model, an self training network on target domain and a
discriminator network.
Firstly, BERT is chosen as a pre-trained model, since BERT is trained on a huge corpus
which makes sure that it can generate universal feature representations. Secondly, self
training is used on target domain to predict sample labels in target domain. We assume that
some predicted answers in source domain will be similar to that in target domain. Those
similar samples x′ = (P,Q) in target domain is called pseudo-labeled samples. A filter is
used at this stage to prevent model from learning target domain distribution wrongly on
pseudo labels. Low similarity samples will be filtered out. Thirdly, conditional adversairal
learning on both source and target domains is applied to minimize cross-domain discrepancy
between source domain and target domain. Note that second and third steps are proceed
iteratively.

Figure 28: Framework of CASe, First step: training BERT on pre-tained dataset, Second step: self-
training on target domain; Third step:Using conditional adversarial learning to minimize cross-domain
discrepancy between source and target domains

• Dataset
SQuAD: it contains 86599 training samples and 10570 validation samples, the questions
are proposed by people based on sentences in Wikipedia, the answers are in text span forms.
CNN and DailyMail: it includes 374K training data and 4k validation data, 872k training
data and 64k valivation samples respectively. Questions are in cloze form, answers are
masked entities in sentences.
NewsQA: QA pairs are generated by workers based on storied from CNN, with 76K
training and 4K validation samples.

26

CoQA: it contains 109k training and 8k validation samples. Questions are in conversation
forms and answers are either in text spans or yes/no types. DROP: It focuses on numerical
data so the answers are in numbers or dates except text spans.

• Experiment
The paper first generalizes BERT on 6 RC datasets and then perform CASe for unsupervised
domain adaption on these datasets.

Figure 29: Performance of zero-shot models on dev set when transferring among datasets. Rows
represents for source dataset, columns is target dataset. Left value is exact match, right score is F1
score.

Figure 30: Domain adaptation performance of CASe on dev sets of datasets. .Rows represents for
source dataset, columns is target dataset. Left value is exact match, right score is F1 score.

The first plot is performance of zero-shot models before domain adaptation. And the second
plot is performance after domain adaption, which shows standard CASe results. Rows
represents for source datasets and columns shows target datasets. The left value is exact
match, the right one is F1 score.
Be comparison, we can see CASe achives significant improvement compared to naive BERT.
Zero shot model performs poorly on two different based datasets e.g., SQuAd to CNN, while
CASe can elimibate such gaps. Domain adaption performs better than SELF in very alkie
datasets such as CNN and DAILYMAIL.

4.1.2 TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence
Selection

Tags:Answer sentence selection, Question Answering, general domain, Transfer learning

• Background
Answer Sentence Selection(AS2) is a branch in Question Answering, it’s task is choose the
correct answer of the question when given a question and a corresponding set of answer
sentence candidates. It is widely used in building conversational agents such as Google
Home, Siri and Alexa. There are many language modeling methods used for QA tasks,
e.g., ELMO, GPT, BERT and XLNet. They first pre-train models and fine tune them on
target tasks. However, they suffers from high accuracy variance, for example, they may be
incline to predict a single label. As a reult, TandA is introduced by Garg [42] to conquer the
problem.

• Model
The definition of AS2 is: given a question q and a set of answer sentence candidates
S=s1, ..., sn, select a sentence sk that can answer the question q correctly.
TandA model is based on Transfer Learning and extends Transformer models by applying a
two-step fine tuning: Transfer and Adapt(TandA).

27

Figure 31: Transformer architecture for fine tuning on AS2

Figure 32: Transfer and Adapt for Answer Sentence Selection, applied to BERT

In the first fine tune step, Transformer architecture is fine-tuned on AS2 task. See figure31,
input is based on concatenation of question and sentense candidates pairs, segments and
their positions. Note that sentenses tokens are separated by three tags,[CLS],[SEP] and
[EOS], standing for beginning, separator and end of sentence. Then as what we mentioned
in Transformer, The input is fed forward to several blocks, and the result is an embedding,
representing the dependencies between words and segments of question and answer
candidate pairs. For downstream tasks, output is processed to a fully connected layer with
weights WTandBT . The probability of a text pair can be calculated after a softmax layer
followed FC layer.
The left block in Figure32 illustrates pre-training step on Transformer model. Note that
input are randomly masked so that the model can generalize well. Then in the middle
block, the model is fine tuned on target task(AS2). In this case Answer Sentence Natural
Questions (ASNQ) dataset, which is a corpus built by the author of the paper that contains
annotated short answers for Natural Questions dataset to fits AS2 tasks better. Normal
transfer learning models will stop at this stage, however, it requires (1) a large dataset for

28

target domain, which is difficult and costly to get. (2) merging source and target domain in a
single move, while the model only need to be specific in the target data. As a result, TandA
applys a second fine-tuning step to adapt the model to the target domain, which is shown at
right block in Figure32.

• Dataset
WikiQA: WikiQA is an AS2 dataset, the answer sentences of which are extracted from
Wikipedia and then manually labeled. As shown in table below, raw data means sum of all
data, all- represents for those questions who don’t have correct answer. all+ means question
only have correct sentence, but no candidate sentences. clean data means those data without
both all- and all+. In experiment, no all- data is used for training and clean data is used in
validation.

Figure 33: WikiQA dataset statistics

• Experiment
Table below shows MAP and MRR of various models for two methods: vanilla fine tuning
and TandA. As we can see from the table, TandA performs a huge improvement compared
to BERT. RoBERTa-Large with ASNQ->WikiQA dataset builds surprising state of art result
with 0.920 and 0.933 in MAP and MRR respectively.

Figure 34: Performance of different models on WikiQA dataset. Here Comp-Agg + LM + LC refers
to a Compare- Aggregate model with Language Modeling and Latent Clustering. TL(QNLI) refers to
Transfer Learning from the QNLI corpus. L and B stand for Large and Base, respectively.

4.1.3 Deep Transfer Learning for Thermal Dynamics Modeling in Smart Buildings

Tags:Domain Adaptation, Thermal dynamics modeling, LSTM, real-estate domain, Transfer Learning

• Background
A good living environment can be beneficial to people mentally and physically. One of the
criterion is the ability to maintain thermal comfort in house. To achieve that, it requires
adaptive thermal dynamic models to capture even slightly thermal changes in room and
adjust for the disturbances.
Efforts have been taken to capture thermal dynamics, such as artificial neural network,
support vector machine and deep neural network. However, those data-driven models can
not transfer existing models to more buildings. In other word, they can not make use of the
knowledge in existing models but derive models from scratch on different data every time
which is very time-consuming. Besides, models can not be constructed well if there is a
limited amount of data.

29

As a result, Jiang and Lee[43]build a method called deep supervised domain adaptation
(DSDA) which applys Transfer Learning to fulfill domain adaptation that transfers prior
knowledge from one building to another.

• Model
A Long short term memory(LSTM) network based sequence to sequence scheme is
pre-trained using time sequence large data collected from source buildings and then
fine-tuned the model by adapting target building, which shares different but related tasks
with source buildings to the model. The goal of the approach is to learn prediction model
which performs well on target building dataset.

Figure 35: Proposed DSDA: LSTM S2S model pre-trained and adapted between source and target
buildings

LSTM S2S architecture is chosen for pre-training. As shown in Figure36, LSTM maps
input xSi to output ŷSi . Every input is encoded as a vector, and final encoding of encoder is
denoted by hKe . hKe is used as an initial state for decoder to cooperate with y0 to activate
decoder. Note that every time step there is a linear activation which is used to predict
decoded state ySi . Every timestep the decoded state from previous step is fed to the current
update. The parameter of the model is learned by minimizing mean square error loss L:
L(yli, ŷ

l
i) = a

n∗L =
∑L
i=1 |yli − ŷli|2.After pre-trining, a limited amount of data from target

building are applied to fine-tune the model to specific target tasks.

Figure 36: Structure of LSTM S2S

• Dataset
Two datasets are considered: Datasets for building indoor temperature evolution: SML,

30

AHU. SML has 1373 building data, which is used for target building. The ratio of training
and testing is 0.67. while AHU is used for source building, with size of 35098.

• Experiment
For temperature evolution, Table below shows with the pre-traning of AHU data, the
predictive performance is improved on SML data, regardless of the prediction time. Small
time prediction performs better than long time prediction.

Figure 37: Comparison table between learning from scratch and DSDA. CVRMSE means root mean
square error, NMBE is normalized mean bias error, MAPE represents for mean absolute percentage
error and root mean square error is RMSE.

4.1.4 NegBERT: A Transfer Learning Approach for Negation Detection and Scope
Resolution

Tags:Negation Detection, sentiment analysis, general domain, BERT, Transfer Learning

• Background
’Negation detection and Scope Resolution’ is an important branch in sentiment analysis,
since a negation reverses the entire meaning of text in its scope. The paper[44] focus on
biomedical data where negation is used frequently. At first, people think it’s feasible to
solve negation and scope detection task by carefully designing rules. However, due to the
complexities of human language, this method fails. After that, people use Deep Learning
based methods, which is very promising. But due to the variety of ways of scope of a
cue(negation word) and small dataset sized, it is particularly challenging to use DL to solve
the problem. For example, the form of cues can be various:

1. Affix: (im)possible, (a)typical, (non)uniform
2. A single word: not, no, lack, fail
3. A set of consecutive words or discontinuous words e.g,.neither...nor

• Model
The paper[44] applys Transfer Learning to Nagation Detection problem. The approach is
consist of two stages: Negation detection and then Scope resolution. The structure of each
stage is a BERT-base connects with a classification layer.
For negation detection, the following schema is used:

1. Affix
2. Normal Cue
3. Part of a multi-word cue
4. Not a Cue
5. Padded tokens

The first three schema corresponds to the cue types mentioned above, the fourth schema
means the token is a normal word, and last schema is used to set the weight of that token to
0 to avoid training(padding strategy in BERT). There are two cue encode methods:

1. Replace: Replace cue token with a special token which stands for the token type. For
example, [im]polite is encoded as token[0] and not is encoded as token[1] neither and
nor are encoded as token[2]

31

2. Augment: Add special token based on original word. For example: [im]polite becomes
token[0]impolite. not turns to token[1]not, neither and nor becomes token[2]neither,
token[2]nor.

For scope resolution, a binary labelling scheme is used, in which 0 represents for not a token
and 1 is as a token.
The process of the system is shown in fig below. Note that the model needs to convert token
level words to word-level. Here it uses softmax on each token for probability distribution
over whole vocabulary.

Figure 38: Proposed System(NegBERT)

• dataset
SFU Review Corpus Dataset, BioScope Corpus and Sherlock Corpus are used for training
and validation. Both SFU and Bioscope corpus suffer from a problem that negation scopes
are annotated as a single span of text delimited by punctuation, as a result, Sherlock Corpus
is introduced. The model is trained on one dataset and test on all datasets.

• Experiment
Table is a summary on negation cue detection result, we can see there is a gap between
previous SOTA model and NegBERT(paper’s model), though NegBERT outperforms
baseline system. The authors of paper think it is because of the small capacity of dataset.
BERT need more examples to train for negation detection.

32

Figure 39: Negation Cue Detection Results (F1 score)

As for Scope resolution, NegBERT performs better than all previous SOTA models, since it
encode the contextual information and transfer among millions of documents in downstream
files.

Figure 40: Scope Resolution Result (F1 score)

4.1.5 Improving Sentiment Analysis with Multi-task Learning of Negation

Tags:Negation Detection, sentiment analysis, general domain, BiLSTM, Multi-task Learning

• Background
The use case of this paper is similar to the last one, both of them can solve negation detection
task. The difference is this paper uses Multi-task learning while the last one uses Transfer
Learning. Sentiment analysis is a popular task in NLP, which assigns polarity to text. The
main task of the paper[45] is to solve sentiment analysis problem, with negation detection as
an auxiliary task to see whether the incorporation can improve the performance of sentiment
analysis. We can see relationship between negative detection and sentiment analysis in an
example. If there is a sentebce:

It’s not so much a work of entertainment as it is a unique well-crafted psychological study
of grief.

If there is no negation detection and scope resolution, it is very likely that naive sentiment
analysis mistakenly classify the sentence as a negative one.

• Model
The structure of Model is shown in figure41. Sentiment and negation tasks share parameters
from lower layers, where BiLSTM is used to extract features from embedding layers.
For negation detection, the model uses a linear chain conditional random field(CRF) with
Viterbi decoding to find labels with most probability. Note that BiLSTM predict cues and
scopes in a single pass.

33

Figure 41: proposed multi-task model.

For sentiment analysis, the model uses skip-connection to concate each embedding to
contextualized representation. Then the sequence is fed to a second sentiment-specific
BiLSTM layer. After that BiLSTM passes through max-pooling and finally to a softmax layer
to calculate the class probabilities. And cross entropy loss is used to train the classification.

Figure 42: Mean accuracy and standard deviation of several models including STL and MTL.
underlined results means the best overall method, bold results means where MTL outperforms STL,
A star* means the model performs extreamly better. The score of SemEval binary for several models
are blank since the previous work doen’t have the results on this data.

• Dataset
For main task(sentiment classification) the paper uses sentence and tweet level classification
such as Stanford sentiment Treebank(SST) and SemEval2013, while learning negation cues
and scopes based on two different negation datasets such as SFU Review Corpus and Conan
Doyle Neg.
SFU Review Corpus: It contains 400 reviews fro, 8 domains: books, cars, hotels, computers,
music, cookware and phones, which annotates negation and speculation at sentence level.
ConanDoyle-neg: It contains Conan Doyle stories which are annotated negation cues,
scopes and events manually. The training set includes 3640 sentences, with 848 negation
sentences. The development set includes 787 sentences, with 144 negated sentences.
Stanford Sentiment Treebank(SST): SST data used in pre-defined train, validation and
test steps, with 11855 sentences retrieved from English movie reviews.
SemEval2013: SemEval is based on tweet-level sentiment analysis including 9287 tweets
with three different sentiments: positive, negative and neural. It is also used in pre-defined
train, validation and test steps.

34

• Experiment
Tabel shows the mean accuracy and standard deviation of several models: Single task
sentiment(STL), multi-task models with SFU auxiliary negation data(MTL-SFU) and multi-
task models with ConanDoyle-neg auxiliary negation data(MTL-CD) over 4 datasets.

We can see that MTL performs better than STL models on most tasks. MTL-SFU does
best on binary tasks, while MTL-CD is good at fine-grained tasks. Note that Tree-LSTM
and BERT perform better than the proposed models, but Bi-LSTM is easier and faster to
train. Next time a model with more complex basic structure should be build to enhance the
performance. But overall, MTL models improves significantly on the STL models.

4.1.6 Multi-Task Deep Neural Networks for Natural Language Understanding

Tags:Natural language understanding, general domain, Transformer, Multi-task Learning

• Background
Natural language understanding(NLU) tasks is fundamental in natural language processing.
It can be used in many applications such as speech recognition, machine translation,
chatbots, etc. As for NLU task, two popular methods are multi-task learning and pre-training.
This paper[16] tries to combine those two approaches and achieve better performance on
NLU tasks.

• Model
The model presented in the paper is called Multi-Task Deep Neural Network model(MT-
DNN), which is an extension based on BERT. As shown in figure43, the lower layers are
shared among all four tasks. The upper layers are task-specific. In this case it has four tasks:

1. Single-Sentence Classification: The model labels each given sentence using one of the
predefined labels.

2. Text Similarity: Given two sentences, the model predicts their semantic similarities.

3. Pairwise Text Classification: The model labels the relationship between each sentence
pairs with pre-defined labels.

4. Relevance Ranking: Given a query and a list of candidate answers, the model rank the
answers based on the relativity to the query.

The input of the model is word embedding vectors X, then the Lexicon Encoder maps X
into a sum of X’s corresponding word, segment and positional embeddings, after which
we got l1. If the input X is a sentence pair(X1, X2), a special token [SEP] needs to be
insert inbetween. In Transformer Encoder, the model captures the contextual message by
self-attention mechanism for each word, l2 vector is computed at this stage. After that, there
comes to task-specific part. For each task, several task-specific parameters are defined to
solve the corresponding problem. For example, inSingle-Sentence Classification Output, the
probability of X having a label c can be computed as:

Pr(c|X) = softmax(WT
SST ∗ x)

where WSST is the task-specific parameter for Single Sentence Classification. To train
the model, we nened two steps: pre-training and multi-task learning. For pre-training part,
it is similar to BERT, the parameters used in Lexicon Encoder and Transformer Encoder
are transfered from two unsupervised prediction tasks: mask language modeling and next
sentence prediction. As for multi-task learning, it uses SGD to learn parameters for each
tasks.

35

Figure 43: Architecture of MT-DNN model for representation learning

• Dataset
As shown in Table below, there are 3 main datasets: GLUE, SNLI and SciTail used for
training and develping.
GLUE: General Language Understanding Evaluation is a collection of 9 sub-NLP-tasks
covered in Table below. It is widely used in many NLP models to enhance generalization
and robustness.
SNLI: Stanford Natural Language Inference dataset contains 570k manually labeled sen-
tence pairs. It is only used for domain adaption here. SciTail A textual entailment dataset
generated from science question answeing dataset(SciQ), which aims to assess if a given
precondition entails a certain hypothesis. Since it is derived from scientific dataset, the
sentences are challenging and lexical similarity of precondition and hypothesis is high,
which makes SciTail difficult.It is only used for domain adaption here.

Figure 44: Statistics of three benchmarks: GLUE,SNLI and SciTail

• Experiment

36

Figure 45: GLUE test set results. State of art results are presented in bold, the results better than
human performance are in blue bold. Note that <T-DNN uses BERTLarge to initialize its shared
layers.

MT-DNN model is initialized shared layers with pre-trained BERTLARGE , then uses
multi-task learning on GLUE dataset, finally fine-tuned on specific task. We can see from
the above table that MT-DNN performs better than all models, except WNLI. Note that it
achieves 2.2% absolution improvement over BERTLARGE , inplies the main reason for the
improvement is MTL since other elements are the same between those two models.
MT−DNNno−fine−tune, just as its name, lacking of fine tune step compared to MD-DNN.
We can see it still performs better than BERTLARGE among all tasks except CoLA. The
reason is CoLA is a dataset with much smaller in-domain data than others, which means it
is difficult to benefit from knowledge of other tasks. As a result, fine-tuning is necessary for
a good performance.

4.1.7 MULTI-TASK SEQUENCE TO SEQUENCE LEARNING

Tags:Language Translation, Sequence to Sequence, LSTM, general domain, Multi-task Learning

• Background
Language translation is an important task in many domains such as tourism and education
industry. Multi-task learning can improve the generalization of target task by learning several
ralated tasks simultaneously, sequence to sequence learning aims at map variable-length
input sequences to variable-length output sequences. Both of them are good at language
translation problem, but there are few works to combine them together. This paper[46]
proposes one-to-many approach to solve translation and parsing using one encoder.

• Model

Figure 46: Sequence to sequence learning examples – (left) machine translation and (right) constituent
parsing .

Figure46 illustrates sequence to sequence translation and pasring, which uses an encoder-
decoder framework. As we can see, a representation s is generated by encoder, and decoder
generates output sequence based on the representation. a bi-direction LSTM architecture is
usually used by S2S task. Note that an attention mechanism is applied to handle long input
sequences, decoder uses attention to decide which tokens to focus.
One-to many approach involves one encoder and multiple decoders, this is for those tasks
like shown in Figure47 , which are share the same encoder. For example, the input sentence
is English words, and there are three tasks: German word translation, tags parsing for
constituency parsing and next sentence prediction. Note that to avoid cheating in unsuper-
vised learning prediction task cased by sequence to sequence modeling where encoder has
included all messages and passes that to decoder, the unsupervised task only encode half
sentence and predict the other half, which is called autoencoders.

37

Figure 47: One to many approach setting.

• Dataset
The paper uses WMT15 data for English and German translation training, and
newstest2014(2737 sentences) for English to German translation validation, and new-
stest2015(2169 sentences) for German to English translation validation. For parsing, Penn
Tree Bank(PTB) dataset are used for training and validation devided by a certain ratio.

• Experiment
Table shows an improvement can be seen after adding a very small number of parsing mini-
batches(0.01x means one parsing mini-batch every 100 translation mini-batches). More
specificlly, even though single task baseline performs well, the best multi-task model still
achieve a gain of +1.5 BLEU points over single model. What’s better, parsing task can also
benefit from translation task by gaining a +8.9 F1 points over the baseline.

Figure 48: English to German WMT’15 translation and Penn Tree Bank parsing. Results mea-
surements: perplexities (ppl), BLEU scores, and parsing F1 for various systems. Best results are
highlighted in boldface.

4.1.8 Exploring the Limites of Transfer Learning with a Unified Text-to-Text Transformer

Tags:Transfer Learning Exploration

• Background
With the explosion of unlabeled text data on Internet such as Common Crawl, which offers
ca.20TB text data extracted from Internet per month, leads to more attention on pre-training
in Transfer Learning, since pre-training utilizes unlabeled data for unsupervised learning.
There are various techniques in this field which makes it difficult to figure out which are the
optimal algorithms, discriminate the affection of contributions and understand the space of
existing methods. This paper [47] aims to achieve a more thorough understanding of those
techniques by presenting a unified and systematically approach to transfer learning.
The paper focus on ’text-to-text’ Natural Language Processing problem, as a result, the
paper can apply the same model, training procedure, training process to each included task.
The paper covers many English-based NLP problems, such as question answering, document
summarization, sentiment classification and so on. Those tasks are evaluated by the unified
models by comparing their effectiveness, datasets and other factors.

• Optimal model parameters experiment

1. Baseline Model

38

Figure 49: Illustration on the masked method used in the baseline model. For this specific case, in the
sentence “Thank you for inviting me to your party last week.” words “for”, “inviting” and “last” are
randomly chosen to reconstruction. Each masked sequence are replaced by one special token (<X>
and <Y>) which is unique over the example. The target sequence consists of the dropped-out spans,
delimited by the sentinel tokens used to replace them in the input plus a final token <Z>.

A standard encoder-decoder Transformer is set as a baseline model, given the good per-
formance it has on both classification and prediction tasks. Both encoder and decoder
are consisted of 12 blocks. In block, there are self-attention, optional encoder-decoder
attention and a feed forward network. The output of feed-forward network has di-
mensionality of 3072, followed by a ReLU activation function. The dimensionality of
’key’ and ’value’ in attention mechanism is 64. In total, there are about 220 million
parameters in the model.
During experiment, people found that ’denoising’ objectives helps the model learn bet-
ter. The authors randomly samples and drop pit 15% tokens of inputs. For consecutive
drop-out spans, they are replaced by a single token. An example is shown in Figure
below.
To make comparison, models without pre-training is also introduced. Accroding to the
table blow, we can see models with pre-training gains a huge improvement. The only
exception is on WMT English to French task. The reason is that the dataset has already
large enough, so there’s no need to learn from pre-training data.

Figure 50: Average and standard deviation of scores.

2. Comparing different model structures
This part makes comparison on 3 different models: Encoder-decoder; Language model
and Prefix LM. As for language model, since it can’t foresee the tokens after the
current token, only Transformer decoder is used.

Figure 51: Different attention mask patterns. The input of the self-attention mechanism is x and output
is y. A dark cell at row i and column j indicates that the self-attention mechanism can be applied to
input element j at output timestamp i. A light cell indicates that the self-attention mechanism is not
allowed.

39

Figure above is an explanation on Prefix LM. It can help model to see the whole
portion of input sequence. For example, when there is a continuous sentence containing
a premise, a hypothesis and a target, LM with prefix can be encoded like this: “mnli
premise: I hate pigeons. hypothesis: My feelings towards pigeons are filled with
animosity. target: entailment”. By doing this, the model will have a full vision about
the input, and predict the classification of the task easier given the prefix("mnli" in this
case).

Here we set the number of layers and parameters in a baseline model as L and P. M is
set to be the number of FLOPs needed in a L-L-layer encoder-decoder model. Multiple
configuration is set for encoder-decoder model as shown in Table below:

Figure 52: P is the number of parameters in a 12-layer base Transformer layer stack and M to refer to
the FLOPs required to process a sequence using the encoder-decoder model.

In denoising objective, the model’s task is to predict missing or corrupted tokens in the
input. In LM objective, the model is trained to predict consecutive tokens.
We can see from the table that encoder-decoder model with denoising objective per-
forms better than any other models. Sharing parameters between encoder and decoder
performs similarly with the best model. However, models with half parameters and
with decoder only hurts the performance. Overall, training models with denoising
objectives always outperforms training with LM.

3. Unsupervised objectives

This section aims to explore the space of unsupervised objectives.
– Different high-level approaches.

To begin with, three different models are compared: First is "prefix language
modeling", the input of which can be devided into 2 components, one used as
encoder inputs one as target sequence to be predicted by decoder. Second is
"masked language modeling" inspired from BERT. Third is deshuffling objective.
The examples of input and targets of each model is presented as below:

Figure 53: Instances of inputs and targets sequences offered by different unsupervised methods given
input:“Thank you for inviting me to your party last week .” Here,all words were mapped to a single
token. The task is to reconstruct the entire sequence given input. <M> denotes a shared mask token
and <X>, <Y>, and <Z> denote sentinel tokens that are assigned unique token IDs.

40

Figure 54: Performance of the three disparate pre-training objectives

The performance of those models are presented in Table below, we can see that
BERT-style (with MASK) objective outperforms others, although Prefix language
modeling performs as well on EnDe. Deshuffling performs the worst.

– Corruption strategies
Since BERT-style performs best among all models, this section focus on BERT-
style objective exploration. First objective we consider is BERT-style, which don’t
include random token swapping step but simply replace 15% of tokens in input with
a mask token. A similar objective is replace the 15% tokens with "MASS". Third
and forth models are corruption spans replacement and drop corrupted tokens. The
goal of these two models is to prevent from long sequence self-attention deduction.
The performance are listed in table below:

Figure 55: Comparison of variants of the BERT-style pre-training objective. In the first two variants,
the model is trained to reconstruct the original uncorrupted text segment. In the latter two, the model
only predicts the sequence of corrupted token

– Corruption rate
By far, we’ve been using corruption rate as 15%, the authors try to find whether
corruption rate is an important influence on the result. They compare corruption
rate of 10%,15%,25% and 50%. We can tell from figure below that corruption rate
does affect the performance. Larger corruption rate means longer trargets, which
could potentially slow down training speed. Setting 15% as corruption rate seems
to be the most wise choice.

Figure 56: Performance of the i.i.d. corruption objective with different corruption rates.

– Corrupted span length
The paper raises a question that whether the corruption spans will perform better
than i.i.d. manner, as a result, they test the theory on 4 different settings other than
i.i.d model: with average span length as 2,3,5 and 10. We can see from the result
that using average span of 3 performs better than i.i.d objective on most cases. We
could say corruption span does influence the result.

41

Figure 57: Performance of the span-corruption objective for different average span lengths. 15%
corruption rate is used in all of the original text sequence.

Figure 58 is an overall conclusion on the best setting for pre-training objectives:

Figure 58: A flow chart of our exploration of unsupervised objectives

4. Pre-training dataset size
Unlabeled datasets
To verify the pre-training function of proposed dataset C4(illustrated in Dataset section)
generated by the authors, a comparison is made with 5 other datasets: Unfiltered C4,
RealNews-like, WebText-like, Wikipedia and Wikipedia + Toronto Books Corpus. All
of them have different extraction sources and sizes. Here, unfiltered C4 means it does
not filter out the bad words which are eliminated from C4.

Figure 59: Performance resulting from pre-training on different datasets. The first four variants are
based on our new C4 dataset.

We can see from the Table above that removing the bad words from C4 does
help in improving performance. Besides, Wikipedia + PBC beats the record of
C4 in several tasks, which because TBC covers exactly the domain of thoses
tasks. Similarly, RealNews-like dataset performs the best on Exact Match score
for ReCoRD, a dataset that measures reading comprehension on news articles.
We can learn from the comparison that pre-training on in-domain unlabeled
data can help in performance on downstream tasks. However, if we want to train
a model which can be used in various tasks, we have to use data from arbitrary domains.

Pre-training dataset size
To test the influence of pre-training dataset size, the baseline model is trained on 5
different sizes corpus. As shown in table below, we can see that the performance

42

improves with the increasing size of dataset. One possible explanation is that the model
memorizes the pre-training dataset owing to the repetition.

Figure 60: Measuring the effect of artificially shrinking our C4 dataset

The training loss is shown in Figure above, we can confirm our assumption based on
the low loss function attained by small dataset. As a result, the authors suggest to use
as large pre-training datasets as possible.

5. Training strategy

– Fine tuning method
So far we’ve been discussed pre-training method, this section focus on training
strategy. Except training the whole layers, we can also train layers partially. First,
adapter layers can be adapted. The idea of adapter layer is to keep most of the
original model fixed.Adatper layers are extra dense-ReLU sdense blocks which
allows the output dimension matches input dimension. During fine-tuning, only
adapyer layer and normalization parameters are updated. Second method for partial
training is "gradual unfreezing" method, which means the layers are gradually
unfrezzed during training.

Figure 61: Comparison of different alternative fine-tuning methods that only update a subset of the
model’s parameters. For adapter layers, d refers to the inner dimensionality of the adapters.

As we can see from the Figure above, tasks with lower resource such as SQuAD
performs better on lower dimention value d, whereas higher resource tasks need
higher dimensionality. This means that it is feasible to improve fine-tune results
using adapter layers when we know the task size. As for unfrezzing, it does speed
up the fine-tuning but it also degrade the performance.

– Multi-task learning

The idea of multi-task learning is training a single model which can perform many
tasks at the same. As a result, the training set should include multiple task sources,
how to choose the data size of each task is a problem. Since if the size is too small,
the task can never be learned. If the tasks are not relevant to each other, then it
could case "negative transfer" problem, means the model would learn less when
learn those tasks all together.
There are three data fusion strategies: First is Examples-proportional mixing,
means the sample is in proportional to the size of each task’s dataset. Second one is
Temperature-scaled mixing, means each size is abstracted by a portion 1

T , where T
is called temperature. The third one called Equal mixing, which means the example
source is chosen in equal property from each task.
The comparison results is in Table below, we can see that there are equal mixing
strategy performs the worst, which may because low-resource tasks overfit and
high-resource tasks underfit. As for k elements, there is a "sweet spot". This means

43

the performance improved as k increases and then decrease if k keep increasing.
As for high resource course, the sweet spot may not true, since it always asks for
more data to train. Finally, T=2 performs the best in most cases.

Figure 62: Multi-task training using different mixing methods. Examples proportional size is
proportional to the total size of each dataset, with an artificial limit (K) on the maximum dataset size.
Temperature-scaled mixing re-scales the sampling rates by a temperature T. For temperature-scaled
mixing, an artificial dataset size limit of K = 221 is applied.

– Multi-task learning and Fine-tuning combination
Pure multi-task learning is to train a single model for different task, here we extend
this approach by pre-training model on all tasks at once and then fine tune on
individual supervised tasks. Here 5 models are considered. First model is the
classic one task unsupervised learning, second is classic multi-task training, third
is multi-task learning which combine fine-tuning and pre-training as described
above. Fourth model is "leave one out", which means in pre-training, leave one
task data out and use this task as fine-tuned data. This model aims to see the
generalization ability of multi-task learning. The last model uses a supervised
dataset for pre-training to see whether the absence of unsupaervised task will affect
the result.

Figure 63: Comparison of unsupervised pre-training, multi-task learning, and various forms of
multi-task pre-training.

The result shows that multi-task learning with both finr-tuning and pre-training
performs simialar to the baseline model. Leave one out model performs only
slightly worse, which indicates that the model can generate the knowledge by pre-
training. Finally, supervised multi-task pre training performs significantly worse
except for translation, which means translation task benefit less from pre-training.

6. Scaling
This chapter aims to examine the affectiveness of scaling, such as model size, training
steps and ensembling. Here 6 scaling strategies are considered. The baseline model has
220M parameters and pre-trained and fine-tuned 219 and 218. 2*size means the model
is twice big as baseline model. As for ensembled model, it ensemble 4 separately
pre-trained and fine-tuned models and average their logits before feeding into softmax
function for aggregate prediction, as shown in second last line. As for the last model,
it is less time-consuming. It only trains one single model and produce 4 separate
fine-tuned sub-models.
As we can see from Figure64, there is no significant difference between training 4X
steps and 4X batch size, both of which are beneficial. Increasing model size leads
to an additional bumo compared to solely increasing training time or batch size. As
for the observation of line 4,5, we can observe that increase training time or model

44

size can improve performance. Ensembling several models can improve performance,
but without fine tuning separately performs a little worse but still better than baseline
model, which offers a cheaper means to improve performance.

Figure 64: Comparison of different alternative fine-tuning methods that only update a subset of the
model’s parameters.

• Dataset
In order to measure the effect of quality, characteristics and size of unlabeled data, the
authors generate a new dataset by leveraging Common Crawl as text source. Common
Crawl should not be unfamiliar with NLP task since it has been used in n-gram language
model training, commonsense reasoning and pre-training et al. Common Crawl is cleaned
by removing markup and other non-text content from HTML files. At this step, the data is
still not natural language, but contains gibberish or boiler plate. Besides, not all sentences
are relevant to our tasks. As a result, the follows strategies are used to extract text:

– Only keep lines ended in a terminal punctuation mark.

– Remove any page included word on "List of Dirty, Naughty, Obscene or Otherwise
Bad Words".

– Remove line with Javascript to avoid warning.

– Remove pages containing phrase "lorem ipsum" to banish placeholder "lorem ipsum"
text.

– Remove pages containing curly bracket to eliminate code.

– Remove all three-sentence span sentence to deduplicate dataset.

– Filter out any pages which are not classified as English by langdetect.

In the end, a dataset which is bigger than most pre-training datasets(about 750GB) and with
clean and natural English text is generated. The dataset is named "Colossal Clean Crawled
Corpus"(C4).

When evaluating the performance of the model integrated with best structural strategies,
multiple tasks are considered: machine translation, question answering, abstractive summa-
rization and text classification. Here, GLUE and SuperGLUE focus on text classification
tasks containing its own corresponding dataset such as Definite Pronoun Resolution(DPR).
CNN/Daily Mail is for summarization; SQuAd for question answering and WMT English to
German, French and Romanian translation. The data details can be seen in [47].

45

Figure 65: Performance of T5 variants on every task. Small, Base, Large, 3B, and 11B refer to model
configurations with 60 million, 220 million, 770 million, 3 billion, and 11 billion parameters. First
row of each table is the state-of-the-art result for the task, with the superscript denoting its source
with references listed at the end of this caption.

• Wrap up Experiment
Given the results of the experiments above, the final model uses BERT-style objective with
a mean span length of 3 and 15% corruption rate; C4 as pre-traning dataset; To test the
relationship between sizes and resources limitation,4 sizes are introduced: Base, Small,
Large and "3B and 11B". milti-task pre-training style. To avoid negative transfer, we
substitute the following artificial dataset sizes for our unlabeled data before using standard
example-proportional mixing (described in Section 3.5.2): 710,000 for Small, 2,620,000 for
Base, 8,660,000 for Large, 33,500,000 for 3B, and 133,000,000 for 11B. The results are
shown as the following:
Overall, the paper achieved state of-the-art performance on 17 out of the 24 tasks it considers.
As expected, the largest (11 billion parameter) model performed best among all model size
variants across all tasks. The T5-3B model variant did beat the previous state of the art in
a few tasks, but scaling the model size to 11 billion parameters was the most important
ingredient for achieving the best performance

4.1.9 Summary

This section covers 8 papers in total, with 4 Transfer Learning paper and 3 Multi-task Learning paper
and one Transfer Learning survey. Based on the papers introduced above, Transfer Learning can
be used in applications such as Reading Comprehension, Answer Sentence Selection, Dynamics

46

Thermal Models Building and Negation Detection, while Multi-task learning can be applied in
Negation Detection, Natural understanding and translation.

4.2 Protein

4.2.1 MODELING THE LANGUAGE OF LIFE —— DEEP LEARNING PROTEIN
SEQUENCES

Tags:Protein Structure Prediction, Protein function prediction, General Domain, ELMo, Transfer
Learning

• Background
How to predict protein structure and function from amino acid has always been a popular
task in Computational Biology. With the increasing amount of protein datasets, machine
learning and evolutionary information derived from multiple sequence alignments(MSA) of
related proteins in the datasets are married to solve these problems and achieves great results.
However, there are several limitations on evolutionary information: First, finding MSA
sequences can be very computationally expensive. Plus, for small protein families, evolution-
ary information is not available, such as Dark Proteome. As a result, the paper[48], instead
of searching evolutionary related proteins, transfers biophysical information generated by us-
ing bi-directional language model ELMo from large, unlabeled sequence dataset(UniRef50).
The authors take references from NLP tasks, where models are pre-trained on large unlabeled
corpus such as Wikipedia for next word prediction, and assumes that protein sequences
can be learned like NLP sentences by ELMo model. Note that there are several differences
between NLP and protein tasks. First, Protein has longer longest sequence than NLP, with
33,000 and 1024 separately, which is challenge for long-range dependencies capture. Sec-
ond, most of proteins only use 20 amino acids and 5 additional characters, while there
are millions words in NLP. Smaller vocabularies could cause similar proteins encoding
problem. Third, the size of UniRef50 is almost ten times larger than largest NLP corpus,
which increases training time by ten-fold.

• Model
The core idea of the process is: first pre-trained a bi-directional ELMo model using UniRef50,
then using the embeddings got from ELMo model to two prediction tasks:per-residue(word-
level) and per-protein(sentence-level) prediction to assess the predictive ability of ELMo.
ELMo adaption: ELMo is used to generate word embedding vectors, users don’t need to
fine-tune the model on specific datasets, which increase flexibility of the model. The model
first receive a protein sequence as an input, and then it returns 3076 features for each residue
in the protein sequence. The features are divided into 3 parts and fed into 3 internal ELMo
layers, which makes each token a vector of length 1024. Since there is no fine-tune step
in the model, the authors make a little change on the structure of ELMo to increase the
generalization ability: First, reduce the token type size to 28(20 standard and 2 rare amino
acids plus 3 special tokens and 3 tokens to indicate location). Second, increase unroll steps
number to 100. Third, lower negative samples to 20 Last but not least, increase total token
number to 9,688,889,953(token number of UniRef50).
Per-residue level task: A two layer CNN model is trained to show the prediction power
of SeqVec embedding from ELMo. As shown in the left half of Figure below: The first
CNN layer contains 32 filters each with window size w=7. Then after going through
a rectified linear unit(ReLU) and drop out, it goes to the second layer, where another
CNN layer with window size 7 is applied again. The model is trained on several dif-
ferent input combinations: DeepProf(14k parameters), DeepSeqVec(232K parameters),
DeepProf+SeqVec(244k parameters), DeepProtVec(25k parameters), DeepOneHot(7k pa-
rameters) and DeepBLOUSUM65(8k parameters).The details are covered in paper[48].
Per-protein level task: It is demostrated by a feed forward neural network model. To get a
single-sized input, it average the embedding of all residues in a certain protein sequence
giving a 1024 dimentional vector for each protein. After a hidden layer, the features are
compressed into 32 features. The final prediction can be got after batch normailization,
dropout and activation function Relu.

47

Figure 66: Left diagram shows the architecture for residue-level prediction. W is the kernal size of
CNN(W=9 means convolition of size 9*1) The right diagram is the structure of protein-level task.

• Dataset
UniRef50: For pre-training, the paper uses UniRef50 to train ELMo for Sequence Vectors.
UniRef50 is a redundancy reduced subset of UniProt database, with 50% pairwise sequence
identity(PIDE). It contains 33M proteins and 9,577,889,953 residues. Each protein sequence
is treated as a sentence and amino acid as a single word.
NetSurfP-2.0: It is used to train pre-residue level tasks such as secondary structure
prediction and intrinsic disorder detection. NetSurfP-2.0 is published by a recent work
which performs well on secondary structure prediction.[49]. It has 10,837 sequence unique
proteins sequence. Sequences are mapped by "structure integration with function, taxonomy
and sequence’(SIFTS), those who has same length with NetSurfP-2.0 from mapping are
kept.
There are 3 test sets: TS115: 115 proteins from high-quality structures. CB513:513
non-redundant sequences and CASP 12:21 protein from CASP12 free-modeling targets.

DeepLoc: DeepLoc is for per-protein level tasks such as localization prediction
and membrane proteins detection. DeepLoc is released in [49], it is used to train and
validate Localization prediction task. Plus, the author of DeepLoc make it map input
proteins to ten classes, with additional labels whether is is water soluble or membrane bound.

• Experiment
As for per-residue performance, secondary structure task uses three-state perresidue accu-
racy(Q3) and eight-state analog(Q8) measures. while disorder is evaluated by Matthew’s
correlation coefficient (MCC) and the False-Positive Rate (FPR).
As for Per-protein performance, it uses two-state per set accuracy (Q2) ten-state per set
accuracy (Q10) and MCC.

As we can see from Fig67, for per-residue tasks the proposed model achieves high
performance but not the best.
For second structure prediction, NetSurP2.0 gets the best score. Using evolution-
ary information(DeepProf with HHblits profiles) has 4-6 percentages lower than
NetSurfP2.0(Q3=76-81%). SeqVec embedding achieves 2-3 percentages below only using
evolutionary information model(Q3=73%-79%). While combination of sequence and
envolutional message improve single usage a little but still doesn’t get the top performance
(Q3=77-82%). For intrinsic disorder task, NetSurfP-2.0 still perform best. However,
embedding alone task(DeepSeqVec) performs better than evolutional model(DeepProf) this
time. Combination of evolutionary information with embedding didn’t beat SeqVec.

48

Figure 67: Per-residue prediction

Figure 68: Per-protein prediction

For localization task, embedding alone didn’t reach top score, but very close. Plus, it
outperforms evolutionary information by up to Q10=13%.

Performance on membrane-bound and water-soluble proteins classification followed a
similar trend: while DeepLoc still performed best (Q2=92.3, MCC=0.844), sequential model
SeqVec performs just slightly lower than DeepLoc (Q2=86.8+/-1.0, MCC=0.725+/-0.021).
However, another method using only single sequences– ProtVec performed significantly
worse (Q2=77.6+/-1.3, MCC=0.531+/-0.026).

4.2.2 BIOLOGICAL STRUCTURE AND FUNCTION EMERGE FROM SCALING
UNSUPERVISED LEARNING TO 250 MILLION PROTEIN SEQUENCES

Tags:protein structure prediction, protein function prediction, General Domain, Transformer, Transfer
Learning

• Background
Due to the decreasing costs of sequencing technology, the biological sequence datasets

49

size is growing exponentially. With the help pf artificial intelligence technology, predictive
and generative techniques can be extracted from sequence data. Many researchers such
as Yanofsky et al[50] Goebel et al[51] and Altschuh[52] have allowed the opinion that
biological function and structure are encoded in the statistics of protein sequences. As a
result, the goal of the paper[53] is to extract general and transferable protein information
from raw sequences.
Self-supervised language modeling has achieve a good performance on many text processing
tasks, the paper uses this modeling method to protein data instead of text data. Given amino
acid sequence has longer and smaller vocabulary than text data, it is unclear if the idea will
fit in the new domain.

• Model
Bi-directional Transformer is used for protein structure and function emergence. The input
of the model are raw character sequence of amino acids. Then the inputs are fed into internal
blocks with self-attention mechanism which enables the model to build up contextual
connections across sequence and model long range pairwise dependencies among amino
acids. The final hidden representation output of the Transformer are sequence vectors, one
for each character in sequence. For orthologous protein embedding, the output is summed
by averaging features among all sequence characters. Each sequence can be presented by
one point. The details are shown in experiment section.

Figure 69: Protein sequence representations encode and organize orthological, species, and phylogen-
tic information of sequences. (a)visualizes representations of several orthologous groups from differ-
ent species via t-SNE.Sequences from the same orthologous group have the same color.(b)visualizes
ortholog sequence representations via PCA (a linear projection technique).Character label denotes
species and genes are colored by orthologous group.(c)visualizes per-species averaged sequence rep-
resentations via a learned hierarchical distance projection; a phylogenetic hierarchy (colors represent
distinct phyla) is overlaid.

• Dataset
The model is trained on a large protein sequence dataset which contains a rich evolutionary

50

sequence samples called Uniparc database. It includes 250 million sequences with 86 billion
amino acids. The size of the data can compare to the data used in high capacity neural
network architecture on natural language.

• Experiment
Embeddings of Orthologous Proteins Orthologous means the genes which are derived
from a common ancestor by speciation. Those genes share same function while the
sequences are different. This task aims to find orthology by protein embeddings got from
Transformer.

Similarity-based spatial organization of orthologous genes: Orthologous genes share high
similarity in sequence order from their ancestry. The similarity can be captured by frequency
baseline, as shown in Figure51(a), LSTM clusters are similar to frequency baseline, the
clusters in untrained Transformer are more compact. While trained Transformer shows a
more tight cluster representing for each orthologous genes, which means it identifies the
similarity of amino acids.

Principal components and directional encoding: This tasks encodes both orthology
and species information by direction in vector to find similar representations of orthologous
genes. In this case, the task uses principal component analysis(PCA) for directions recovery
of variation in representative vectors. It chooses 4 orthologous genes across 4 species to
observe the directions among them. In figure 51(b), the horizontal axis is species and
vertical axis represents for ortholog family. We can see the baseline representation clusters
well on vertical axis but not on horizontal ones. As for other methods, LSTM is basically
the same as baseline, while untrained Transformer has a tighter cluster, which means
Transformer architecture can capture higher order information without any learning.

Phylogenetic organization: Species representations can be shown by averaging per-
protein embeddings of protein-subsets. As illustrates from 51(c), it shows the projected
representations of 48 randomly-selected species evenly split across the three taxonomic do-
mains, suggests that Transformer representations cohere strongly with natural phylogenetic
organization, in contrast to the LSTM and frequency baselines.

4.2.3 Evaluating Protein Transfer Learning with TAPE

Tags:Protein model evaluation, Structure Prediction, Evolutionary Understanding, Protein Engineer-
ing, DNN, Transfer Learning

• Background
With the development of sequencing technologies, the size of protein databases explodes.
However, there is a big gap between the size of protein sequence databases and size of
labeled subsets. As a result, self-supervised learning is used to extract information from
unannotated data, which works quite well in NLP domain. To figure out whether it is
feasible, the paper[54] introduces Tasks Assessing Protein Embedding(TAPE), which
is a evaluation on semi-supervised learning on protein sequences. TAPE evaluate the
performance of learned protein embedding on five different supervised tasks.

• Model
This paper is consist of 3 architectures: an LSTM, a Transformer and a dilated residual
network. Those 3 architectures are designed to have similar amount of parameters. LSTM
contains two three layer LSTMs with 1024 hidden units, while Transfermer consists of 12
layer with 512 hidden units and 8 attention heads. ResNet has 35 residual blocks, each with
two convolutional layers, 256 filters and kernal size 9.

• Dataset
Unsupervised and supervised datasets are introduced in this area: Unlabeled Sequence
Dataset

51

Pfam[55], which is a database with 31 million protein domains, is used as a pre-training
corpus for TAPE. Pfam is clustered into several families based on their evolution. 1% of data
are constructed as a fully heldout families, and remaining data is split into two parts: 95%
training data and 5% test data. The training and testing sets can help test in-diestribution
generalization, while heldout families measures out-of distribution generalization.

Figure 70: Structure of supervised tasks. (a) Secondary structure with input amino acide as blue
segment and corresponding labels output as yellow and whilte. (b)A contact map, indicating whether
amino acids at position i,j in the sequence are within 8 angstroms of each other or not. (c) Fold level
remote homology class for the protein.

Supervised Dataset
TAPE includes 5 downstream supervised tasks, which can be categorised into 3 kinds:
Structure prediction, evolutionary understanding and protein engineering:
Secondary Structure(SS) Prediction(Structure Prediction Task):SS is an important char-
acter for protein prediction, which is used to enrich the features for higher-level mod-
els. The task uses Klausen et al.[49], each input amino acid xi is mapped to a label
yi ∈ Helix, Strand,Other as shown in Figure(a).
Contact Prediction(Structure Prediction Task): As shown in Figure51(b). In this task,
each input amino acids pair xi, xj from sequence x is mapped to a label yij ∈ 0, 1, with
label 0 means the amino acides are not "in contact" (<8A apart), and 1 means they are in
contact. The function can be used to robust 3D protein structure modeling. The data is from
ProteinNet dataset.
Remote Homology Detection(Evolutionary Understanding Task): Detecting remote ho-
mology is widely used in microbiology and medicine domain for tasks such as detecting
emerging antibiotic resistant genes or discovering new CAS enzymes. The input is mapped
to a label ranging from 1 to 1195, representing different possibilities of protein folds. The
details are illustrated in Figure51(c). The data is from Hou et al[56].

Figure 71: Protein Engineering Tasks. A parent protein is mutated to explore the local landscape in
both tasks. The dots represent proteins and direction arrow x− > y means y is the next mutation of x
of parent p. (a)The Fluorescence task consists of training on small neighborhood of the parent green
fluorescent protein (GFP) and then testing on a more distant proteins. (b) The Stability task consists
of training on a broad sample of proteins, followed by testing on one-mutation neighborhoods of the
most promising sampled proteins.

Fluorescence Landscape Prediction (Protein Engineering Task):This regression task
maps each input protein x to its log-flourescence intensity y, which measures the ability to

52

distinguish between very similar inputs. The data is from Sarkisyan et al[57]. Details are
shown in Figure 53(a).
Stability Landscape Prediction (Protein Engineering Task):The input of this regression
task is mapped to a label which indicates what is the most extreme circumstances the input
protein x can maintain its fold above a concentration threshold. The data is from Rocklin et
al[58]. The task measures the model’s ability to generalize from a broad sampling of related
protein sequences and information localization.

• Experiment
We can see from Figure below that self-supervised model with pre-training phrase out-
performs almost all models and tasks. However, alignment based input shows powerful
performance on secondary structure prediction task and contact prediction task. That’s why
many state of the art prediction tasks use alignment based inputs.
Among the three models, Transformer performs worst in secondary structure prediction,
but has best performance on fluorescence and stability tasks. While ResNet is the contrary.
This indicates it’s not wise to judge a model’s performance on a single task, but creating
multi-task benchmarks such as TAPE.

Figure 72: Results on downstream supervised tasks(The measurement is accuracy or precision, the
higher the better. Maximum value is 1.0)

4.2.4 UDSMProt: Universal Deep Sequence Models for Protein Classification

Tags:Protein Classification, Gene ontology prediction, remote homology and fold detection, General
Domain, LSTM, Transfer Learning Learning

• Background
It is important in bioinformatics to deduce protein properties from amino acids sequences.
Many methods use additional handcrafted features combine with amino acid sequences
for protein properties deduction. The features usually includes functional annotations and
homologous proteins sequence incorporation. However, handcrafted features rely heavily
on experience, which could fail in generalization. Besides, the number of features should be
proportional to the size of database, which means the time complexity grows exponentially
with database size.
Deep learning can be used to solve the above problem by directly predict properties by
processing amino acid sequences. Self-supervised models have been used in Natural
Language Processing across various tasks and receive good performances. Self-supervised
models first pre-train model on large unlabeled data to learn implicit knowledge. Then
fine-tuned on specific dataset.
Similar to the application in NLP, protein classification tasks sees amino acids sequences as
words, protein and its domains as text paragraphs and uses self-supervised learning to build
classification models. There are many literature approaches for this domain, which shows
pretraining models using self-supervised learning gain a huge improvement on performance
compared to those models trained from scratch on many tasks. The problem is, none of
those models make experience comparison with state of the art approaches which rely on
handcrafted features such as Position-Specific Scoring Matrics (PSSM) derived via BLAST.

53

This paper[59] aims to pre-trained a deep protein classification model on Swiss-Prot and
fine-tuned on gene ontology prediction and remote homology and fold detection tasks. Then
it also shows a explicit comparison to SOTA featured based models.

• Model
UDSMProt
UDSMProt is abbreviation of Universal Deep Sequence Models for Protein Classification.
The idea is to pre-train a SOTA RNN model on language modeling tasks. The goal of
UDSMProt is to train a model which can fit to different classification problems by a single
shared architecture. In fine tuning phrase, the initial weights are obtained from pretraining.

Figure 73: Schematic illustration of the training procedure. The inputs are amino acid sequence.
<BOS> represents for the beginning of the sequence. Red arrow means context transfer. The right
plot is for fin-tuning, all weight are initialized by pre-training step.

In this paper[59] it uses 3-layer AWD-LSTM language model. As illustrated in Figure31(a),
the model is constructed as follows: The input is from Swiss-Prot databse, after internal
layers, the output layer is replaced by a pooling layer and two fully connected layers.
In fine-tuing step, the layers are unfrozed layer by layer for optimization, during which
learning rate is reduced by 2 percent compared to the previous layer. To get bi-directional
information, forward and backward LSTM ar trained separately. The paper combines them
by averaging the output probabilities of those two classifying models.
Baseline Model
To present a in-depth comparisons, several baseline models are introduced. Those models
have SOTA performance on classification literature benchmarks using only feature-extracted
methods. Features are chosen from PSSM, which is a beneficial input features matrix based
on multiple sequence alignment by position specific iteration called BLAST(PSI-BLAST).
It is used for protein relatives search, where closely related proteins is detected for initial
general profile sequence generation. The new generated sequence is used as the query for
next profile sequence searching.

• Dataset
The model is trained on Swiss-Prot database[60], which contains 26 unique amino acides
with 20 standard and 6 non-standard amino acids. The size of Swiss-Prot database is 560K,
which has a complete annotation of protein properties.
SCOP 1.67 dataset is used in remote homology and fold detection task. In this dataset, all
protein is identified by their super family clusters, which is easy for homology classification
tasks.

• Experiment
Gene Ontology Prediction
The goal of Gene Ontology is to unify a subset of vocabulary for protein attributes
representation. It includes 3 domains: cellular components, molecular functions and
biological processes, here we only focus on molecular function(MF). DeeProtein, DeepGo,
FFPred3 and GoFDR are models relied on handcrafted features, they trained on different
dayasets. For example, DeeProtein is trained on two different datasets Swiss-Prot and

54

CAFA3, with 50% higher sequence similarity than Swiss-Prot.
As shown in the table below, UDSMProt models perform better than previous handcrafted
features models, in both F score and recall. And forward-backward model is the best in
UDSMProt model. This means pretrining model can transfer implicit knowledge from
previous data.

Figure 74: Gene ontology (Molecular function) prediction performance evaluated on the
DeepGO,FFPred3, DeeProtein and GoFDR

Reomote Homology and Fold Detection
Remote Homology can be used to classify protein structure and function, which is very
important in computational biology. Some reference models are introduced, such as
ProDec-BLSTM which is a bi-directional RNN trained by PSSM input features and
GPKernel model, which applys kernel methods.
The metrics covered in this tasks are AUC and AUC50. AUC(50) calculates the Area under
the curve up to the first 50 (x) negative examples, which allows for a better characterization
of the classifier in the domain of small false positive rates than AUC.

Figure 75: Remote homology and fold detection performance on the SCOP 1.67 benchmark dataset
compared to GPkernel, LSTM-protein and ProDec-BLSTM

As shown above, LSTM model outperforms UDSMProt model which is trained from
scratch. This may because the small amount of data in this tasks. But this problem is
overcomed by pre-training. We can see forward+backward pretraining model performs the
best at both superfamily detection and fold level detection.

4.2.5 Predicting human protein function with multi- task deep neural networks

Tags:Protein function Prediction, General Domain, DNN, Multi-task Learning

• Background
The function of majority of amino acid sequences still partly or completely unknown, since
there are over 60 million sequences in UniProtKB database, while only 600 thousand of

55

them are functional annotated on Gene Ontology(GO). People try to transfer sequences
knowledge by mapping between controlled vocabularies and GO from orthologous proteins
and family assignments. However, sometimes there are protein sequences which has no
annotations and lack information for at least one GO domain.
Machine learning can help with the problem. It can model the relationship between function
and features extracted from source data. In this case, even if the protein sequence is lack of
similar sequences with known function or has misleading alignment results, the model can
still generate the function by the sequence pattern.
This paper[61] seeks to investigate the performance of multi-task DNN(MTDNN) in protein
function prediction task which is believed to gain extra score from the dependencies among
functional classes.

• Model
MTDNN: The model is consists of two stages, first stage is a feedforward layers shared
among all tasks and the second stage is task-specific feedforward layers where the tasks
are parallel stacked upon the first stage. The structure figure is shown in Figure51(a) below.
Each hidden layer if fully connected to the previous layer, with batch normalization and
dropout implement during the feed forward transportation.

Figure 76: (a)Schematic diagram of MTDNN. MTDNN trains separate models for each tasks for
different vocabulary in GO terms (b)MLDNN. It trains one model to classify different labels.

After the shared hidden layers, the model trained separate models for each branch to predict
subset of descendants in the vocabulary. For example, there are three domains in each GO
terms which are used to test the model: biological process(BP), molecular function(MF) and
cellular component(CC). For vocabulary GO:0002376, it has 38 branches in total: 18 BP
domain, 11 MF and 9 in CC domain. MTDNN returns one combined result by computing
the mean value of different branches.
Multi-label deep neural networks(MLDNN): MLDNN is also a feed forward multi-layer
architecture. As shown in Figure51(b). The difference is the output is generated simulta-
neously activated by sigmoid functions, the output is returned as a confidence score for
classifying the term.
Single task deep neural networks(STDNN): It emplys a single fully connected feedfor-
ward DNN for a single GO term. As a result, the number of model should be equal to the
number of terms. Each of them are independent from each other.

• Dataset
Protein annotations are achieved from Gene Ontology Annotation(GOA) database. GO
is also used for term definitions and semantic relations. There are three domains in GO
terms which are used to test the model: biological process(BP), molecular function(MF)
and cellular component(CC), each domain has at least 150 annotations and 500 putative
negative examples.

56

• Experiment
Precision, Recall and F1 score are three measurements for testing.
The evaluation is based on standard measure of binary classification accuracy. MTDNN
has highest F1 score in all three domains, while naive method and BLAST perform the
worst. As for recall, FFPred and STDNN has highest score, but lower precision. MTDNN is
the contrary, with higher precision but lower recall. We can see FFPred and STDNN has
high true positive but also high false positive. MTDNN provides a more balanced result on
precision and recall over those domains, while keeping a high F1 score.

Figure 77: Performance comparison for different models

4.2.6 Summary

5 Papers about protein modality are introduced in this research paper, 4 of them use Transfer Learning
and 1 uses Multi-task learning. Although all of the 5 models uses deep learning architecture, only 2
paper is based on Language Models such as ELMo and Transformer and all those papers are released
in recent 2 years. It shows applying language models in protein domain is still an green area waiting
for exploration. In this case Transfer Learning is popular than Multitask learning. According to the
paper covered in this section, Transfer learning can be used in protein structure prediction, function
prediction, classification, while Multi-task learning is used in function prediction for gene ontology
database. The limitation of Multi-task learning in protein domain could be it is tricky to choose the
training dataset, since it needs to encode useful shared information. The choice of Transfer Learning
is flexible by comparison.

4.3 Source Code

4.3.1 Syntax and Sensibility: Using language models to detect and correct syntax errors

Tags:Syntax detection, General domain, LSTM, Transfer Learning

• Background
Both naive and experienced programmers can meet syntax errors, this is an issue especially
for naive programmers who don’t have much experience in debugging. However, current
debugging tools could be misleading. For example, see Figure below. Left graph is source
code in Java, it misses another right brace } to match the { in line 3. The right graph is
the error report. We can see it misleads users with wrong location identification, indicating
other lines instead of line 3.

(a) Invalid syntax sample code in Java, missing {
at line 3

(b) corresponding error report

Figure 78: Misleading debug error report

Imaging a novice programmer saw this report, which even include professional jargon like
error: illegal start of type. The programmer may too frustrated to give up programming.

57

What beginners expect is some reports more straight forward such as "There is a missing
brace to match the other pair in line 3".
This paper[62] aims to find and fix single token syntax errors, which can be described as
follows:

Given a source code with a syntax error, how to find exact location and provide a single
token solution to the error.

It builds two models for the problem: n-gram model and long-short-term-memory neural
network(LSTM). Both of them are trained on large set of Java source code corpus extracted
from GitHub. The improvement of this paper is the test domain doesn’t have to be the same
as training domain compared to previous work which only limited to the same domain and
programming assignment. The test data in this paper is from real syntax errors extracted
from Blackbox repository.

• Model
Building n-gram models for syntax error correction
Error location detection:
10-gram model breaks source code into 21 token long windows. Cross entropy loss is
computed for each token in the window, the score of the middle token is the average entropy
loss of those 21 windows. This setting ensures the context before and after the central word
are considered. The token has highest score is believed to be the most likely error location.
Error fixing:
For top 10 score candidates, the model tries 3 strategies to fix the error: deletion, insertion
and substitution. Deletion is easy to apply since it only has one option. For insertion and
substitution, multiple tokens can be inserted or substituted. As a result, all tokens has
frequency larger than 1000 are tried. For each possible solution, the cross entropy of the
new 21 token long window is computed, the fix with lowest score is applied.

Building LSTM for syntax error correction
Before feeding data into LSTM network, all words are transfered into tokens, as described
in next section, then each token is converted by one-hot encoding. Every file is encoded
as a matrix, the columns are as many as tokens in a file, and rows are as many as
vocabulary size. The model aims to find the syntax error location from the likelihood of
adjacent tokens. If the likelihood is small, it means there is a big probability that there is
a syntax error. To fix the error, all possibility of tokens given adjacent words need to be know.

The sum of those possibilities is 1.0
Two LSTM models is built, one is feedforward one is backward. For forward model, prefix
is used as input. For backward models the input is suffix. The problem is, two models may
return different results. For example, feed forward model may suggests this is the likely fix
word, while backward declare {. with this method, we can detect text from different side.
As training input, the model moving a sliding window over the tokens of each source code
file. The window size is 20.

Syntax error detection
Two independent probability distribution are used to quantify whether the token is
usual(likely) or unusual(unlikely). For a discrete distribution p(x) and a distribution q̂(x),
cross entropy loss is calculated as follows:

H(p, q̂) = −
∑
x∈X p(x)log2q̂(x)

if the value is 0, then it means q̂ mimics p exactly. As a result, the more the value close to 0,
the more natural the value is, the more likely the value is chosen. Here p(x) equals 1 if x is
the token at current position, 0 if it’s not.
The final unnaturalness degree is examined by sum of feed forward model and backward
model:

unnaturalness = H(p, q̂f) +H(p, q̂b)

The position has highest unnaturalness is the most likely position of synta error.
Error Fixing

58

For error fixing, guess and check strategy is used, which means every possible solu-
tion(insertion, deletion and substitution) is used to test whether it returns a syntactically-valid
file. The possible location suggestions are given by the union of two set: topj(q̂f)∪topj(q̂b).

• Dataset
The task can be divided into 2 steps: finding the error and fixing the error. For both steps,
the likelihood of adjacent token given context should be computed:

P (adjacent− token|context)
In order to calculate probability , n-gram models and LSTM model should be trained, as
shown in Figure below. The training data is extracted from variety Java corpus from GitHub,
then tokenized, and finally the tokenized tokens can be used for adjacent word prediction.

Figure 79: Methodology for training language models

As for training data, first Java source code are mined on GitHub, the authors first download
9993 Java repositories by stars successfully, then for each repository, they extracted every
code file with suffix .java. Javac’s scanner and parser implemented in OpenJDK are also be
used to tokenize and parse every downloaded Java file. At the end, the authors tokenized
2,322,481 syntactical correct files out of 2,346,323 Java files. All source code, repository,
data and repository licenses are stored in an SQLite3 database.
Secnodly, for tokenization, one vocabulary containing all possible unique tokens is main-
tained. However, since every new file may contain out-of-vocabulary tokens, the paper just
deems those tokens as irrelevant. Certain tokens are abstracted to assign enough unique
tokens for every words in vocabulary. Also, some tokens can not be abstracted but assign
precise values and names. such as key word and operators. As shown in Figure below,
abstracted tokens are different from file to file while verbatim tokens is shared among files.

Figure 80: Token types and action types whether it’s verbatim or abstracted.

As for testing data, it is extracted from Blackbox, which is a continually updated repository
from BlueJ Java IDE– designed for Java programming beginners. The advantage using data
from Blackbox is it contains wild and realistic data written by novices to test syntax error
detection.
First step is to retrieve source code with both syntax error and fixed solutions. The authors

59

took all data collection up to July 1,2017, UTC and iterates through each pairs <former
compilation, later compilation> and find those pairs whose former compilation failed and
second compilation is succeeded. After that 1,715,312 data pairs are collected, among
which 57.39% are single token syntax errors. Those problems can be solved by insertion,
substitution or deletion, the distribution is illustrated by the table below:

Figure 81: Summary of single token syntax error types.

• Experiment
First task is syntax error finding. The performance is measured by mean reciprocal
rank(MRR):

MRR = 1
|Q|

∑
q∈Q

1
rankq

Reciprocal rank is the inverse of the rank of the first correct location found in an ordered list
of syntax error locations for a file q. Q is a set of total solutions attempted. MRR value
is from 0 to 1, where 1 is the best score, meaning the first suggestion is the correct error
location. Table below is the MRR value when finding the location of syntax error, in general
guess, for a file has 100 lines the MRR value could be 0.002. But from the table, we can see
the MRR score improved a lot.

Figure 82: MRR score of using n-gram and LSTM models for syntax error location detection

Second task is syntax error fixing. n all cases, there is a clustering of reciprocal ranks at 1.0,
meaning that the 10- gram Abstract model tool can suggest the true fix as its first suggestion
30.22% of the time. The 10-gram Concrete model tool can suggest the true fix as its first
suggestion 3.52% of the time. The LSTM 1 tool can suggest the true fix as its first suggestion
3.84% of the time.

4.3.2 Neural Code Comprehension: A Learnable Representation of Code Semantics

Tags:Code semantic embedding, general domain, LSTM, n-gram, Transfer learning

• Background
With the explosion of code data, 1 billion commits written in 337 different languages are
committed on GitHub in year 2017. As a result, how to understand the code turns to be
an important task for many fields. This task is tough since each language has different

60

syntax(different operation orders), but remains semantically related(return the same output).
In order to improve code comprehension, Natural language processing(NLP) concept is
introduced, which is based on the hypothesis that software, like language, is also a form of
communication. Software corpora is similar to language corpora. In NLP, the inputs are
usually encoded to tokens. So for code comprehension task, the input(eg,. keywords or
braces) should be processed into tokens such as one-hot embedding or word2vec models,
which maps the input into lower dimentions. RNN model is trained on those tokens and
achieves huge success in some domains such as summarization, function prediction and
classification. However, the privious work has 2 constraints. First, they all work on single
programming language and can not generate on future languages. Secondly, current
methods can’t deal with code with loop and targeting function.

The paper[63] aims to represent code semantics in a robust way. The pipeline is illustrated
in below: First, the model accepts multiple source code languages, and uses LLVM
Compiler Infrastructure to present Intermediate Representation(IR). Then the representation
is processed to a robust representation called conteXtual Flow Gtaphs(XFGs), which
supports loop and function calls. After that, the result is used to train individual statement
embeddings called inst2vec, which is fed to RNNs for task specific models.

Figure 83: Overview of Neural Code Comprehension pipeline

• Model
As illustrated from figure above, the Neural Code Comprehension can be divided into 4
parts: LLVM to dived IR statements into blocks, XFG construction to catch flow among
blocks, inst2vec to embed statement in continuous space and last stage: train task specific
RNN models. Compilation–LLVM

Figure 84: Contextual flow processing scheme.

Figure (a) and (b) illustrates original code and it’s corresponding LLVM IR representation.
The detail of LLVM IR statement is shown in figure (a). In LLVM, IR is given in Static
Single Assignment(SSA) form. As shown in figure(b). This form ensures every variable is
assigned only once, which makes it easier to track between IR statements. To represent
control flor relatuibs sycg as loops, SSA defines Φ-expressions. The expression can list all

61

possible outcomes and optimize code among all branches. In figure(b), the identifier %4 is
constructed from a Φ -expression that can take either the value of %2 or %3, depending on
the value of x.
ConteXtual Flow Graph(XFG)
Only has LLVM IR is not enough since it can not capture dataflow from different blocks, as
illustrated in figure(c). As a result, XFG is introduced. See Figure(d), the edge between
blocks represents data dependences(black words).
The process of generating XFG Construction from LLVM IR is as follows: Firstly, read
LLVM IR statements once, storing function names and return statements. Secondly, pass
over the statements again, at the mean time adding nodes and edges according to the
following rule-set: (a) Data dependencies within a basic block are connected.
(b) Inter-block dependencies (e.g., Φ-expressions) are both connected directly and through
the label identifier (statement-less edges).
(c) Identifiers without a dataflow parent are connected to their root (label or program root).

(a) Anatomy of an LLVM IR statement. (b) SSA of x += (a*b)+(c*c)

Figure 85: Expressions for LLVM IR and SSA

inst2vec
With the help of XFGs, the embedding for each statements can be trained. To train embed-
dings, a skip-gram model is used. The data used here is covered in detail at dataset part, in
this section we only mentioned the setup and training of the model. First, after given a set
of XFGs which is extracted from LLVM IR files, neighboring statement pairs based on a
fixed context size N is generated. The pairs appears less than 300 times is removed from
dataset. The 200 dimension inst2vec model is trained for 5 epochs using Tensorflow and
Adam optimizer.
Task specific models
Three different tasks are introduced to evaluate inst2vec. RNN models with same archi-
tecture is tuned for those 3 tasks. The input of RNN is inst2vec with a context size of 2,
followed by 2 stacked LSTM layers with 200 neurons for each layer, batch normalization
and ReLu activation functions, Adam optimiser are used. The Data used for those 3 tasks
are introduced at next section.

• Dataset
inst2vec training data
preprocessing is implemented before transport XFGs data into inst2vec. Comments and
metadata are discarded. Then it uses <INT/FLOAT/STRING> and %ID to replace imme-
diate values(numeric constants, strings) and identifiers. Figure below shows the statement
contraction.

Figure 86: Before and after processing LLVM IR to inst2vec statements

Table below shows the code corpora and vocabulary statistics of the inst2vec dataset. The
choice of corpora is bsed on their disciplines such as benchmarks, operating systems,
computer vision and machine learning. The code in the dataset is written in C, C++,
FORTRAN, and OpenCL, and is compiled for Intel CPUs as well as NVIDIA and AMD
GPUs.

62

Figure 87: inst2vec training dataset statistics

RNN training data
For algorithm classification task, the training data is from POJ-104 dataset, collected from
Open Judfe System. It’s a 500 people contribution dataset with 104 program classes. For
compute device mapping and thread coarsening factor prediction task, OpenCL code dataset3
provided by Cummins et al. [18] is used.

• Experiment
For Algorithm Classification task, the input of model is embedded source code and output
is program class the model predicts. For comparison, several State of the art models are
introduced. Tree-Based CNNs(TBCNN), which is the best classifier in POJ-104 dataset. We
can see from Figure below that onst2vec outperforms TBCNN even though the dataset used
during embedding generation doesn’t contain POJ-104.

Figure 88: classification test accuracy

For Heterogeneous Compute Device Mapping, the task is to predict whether a given OpenCL
program will run faster on CPU or on GPU given by its input data size, code and number
of threads used in a group. Here XFGs and inst2vec inputs are concated with thread and
data size, and trained by 10 fold cross-validation. The result table below shows the results
of heterogeneous device mapping. Besides inst2vec and ins2vec-imm(with immediate value
handling), feature extraction model proposed by Grew et al[64] and DeepTune[65] model
are also introduced. We can see from the table that inst2vec performs better than Grewe et
al. and is similar to DeepTune.

Figure 89: Heterogeneous device mapping results on CPU–AMD Tahiti 7970 and GPU NVDIA GTX
970.

63

For Optimal Thread Coarsening Factor Prediction task, it measures the amount of work per
GPU thread does for a certain OpenCL source code. To find out how much inst2vec speed
the threads up, manual features proposed by Magni et al[66] DeeoTune and DeepTune with
transfer learning are mentioned. We can tell from table below that inst2vec proforms the
best in half platforms. While ins2vec-imm’s performance is similar to DeepTune-TL, it fails
to outperform DeepTune-TL in AMD Tahiti 7970 and NVIDIA GTX 480. This may owe to
the small size of the training data for this task.

Figure 90: Speedups achieved by coarsening threads. AMDs are CPU and NVIDIAs are GPU

4.3.3 Learning-based Recursive Aggregation of Abstract Syntax Trees for Code Clone
Detection

Tags:Code Clone Detection, Abstract Syntax Tree, general domain, Transfer Learning

• Background
Nowadays, online source code can be easily cloned from open-source code repositories,
forums and app stores, code clones has made up a large part of software system. As a
result, code clone detection becomes an important part of software examination. Besides,
code similarity detection can also be used in bug detection, performance prediction and
information retrieval in software contexts.
Recently, many researches are studied for code clone detection, during which researchers
find the embeddings of code tokens are in different forms, such as sequence, tree or other
graph of discrete tokens. To represent for code inputs and their combinations, Abstract
Syntax Trees(ASTs), identifiers, Control Flow Graphs and Bytecode are used.
This paper[67] uses AST to learn from clone/non-clone data and generate code representa-
tions during which Siamese Network is used to share the weights from 2 RNN models, that
aggregate the ASTs of two Java methods. It figures out that We find that the most important
factor for a good model is a pre-trained embedding. We show how error scaling solves the
class imbalance problem of supervised code clone detection.

• Model
Siamese Network compares the results of 2 RNN models which are used to encode 2
code fragments separately. It aims to maximize the cosine similarity between clone codes
and minimize that of non-clone pairs. As illustrated in the figure below, the Siamese
network can be trained by forward and backward propagation. RNN models is used to
process ASTs. The ASTs are constructed in a binary tree. Every node contains two parts:
node type(eg., ForStatement, StringLiteral and InfixExpression) and node content(eg.,
"false","Hello World!" and "1024"). The method to construct the tree structure is covered at
dataset-preprocessnig part.

Figure 91: The Siamese network during training

64

During the training process, one LSTM architecture traverses through all the tree nodes.
Each node combines the output of its children. Children nodes receives the hidden states
hl, hr and cell statescl, cr. xtandxc are the vector representations. Those 6 vectors are the
input of LSTM architecture. If some node are empty, just set the corresponding vector value
as 0.

Figure 92: The Siamese network during training

• Dataset
For supervised learning, labels should be given. To get ground truth data, famous Big-
CloneBench bench mark dataset [68] of method level for Java code clones is used.
The raw Java source code is parsed to generate AST tree. Three modification is made during
the generation. For example, given a phrase of source code called "Hello World":

public static void main(String args[]){
System.out.println("Hello, World!");

}

First, method name are cut out to guarantee the model won’t depend on method name. Then,
additional nodes are proposed to form equivalent binary tree. If a node has more than two
children, the children are divided into half. We assign the bigger half to a new left child, and
the others to another new right child node. This step is repeated for both children until the
smaller set of children is less than three. As shown in figure below, the tree is deeper than
before. Finally, the rare node contents are mapped to UNKNOWN tokens. as shown in red
block. After AST tree is generated, the trees with depth deeper than 28 and nodes more than
1000 are eliminated. At last 227 candidates are cut off.

Figure 93: AST tree of Hello World code, before and after preprocessing

65

• Experiment
For experiment, the paper test the function of pretraining embeddings. It compares the
performance of the RvNN model with and without pretrained the embeddings of its AST
node vectors. See the figure below, the average performance drops from 0.845 to only 0.746
AUC.
We included also the baseline that uses the pretrained embeddings (”Emb. Φ (14D)”). It
can surpass many of the non-optimally configured models. Especially, it outperforms the
otherwise optimally configured model, that starts training with no pretrained embeddings.
We can know from this comparison that a good pretrained embedding has a higher impact
on performance than a complex model on top of it.[68]
The case "with output gate" means run the model with an additional LSTM output gate.
However, this may lead to parameters evpload, which causes overfitting.
Margin means the extent of gap between two trees ASTl and ASTr. It is set to 0 by defalt.
The first line indicates full scaling dataset, which means dividing the errors occurring for
non-clone pairs by the ratio of number of non-clones to clones, works best, as seen in Table
IV.

The last row using unaware split performs much better than other cases, the reason is the
model is trained on the same clusters as the evaluated data, while previous cases’ training
and testing data are from different clusters. As a result, evaluating supervised code clone
detection using same clusters could lead to misleadingly good result.

Figure 94: THE PERFORMANCE FOR DIMENSIONALITY 150 W.R.T. OTHER CHANGES

4.3.4 Summarizing Source Code with Transferred API Knowledge

Tags:API knowledge summarization, code summarization, general domain, GRU, Transfer Learning

• Background
Code summarization is a description on source code in natural language, it aims to help
program comprehension and code search. Code Comments, as one of the most used code
summarization method, can be really helpful when there are many people working on one
project together and for further maintenance. However, high-quality code comments are in
short in software industry. Comments are often out-dated, not available or unmatched. Be-
sides, it is also very time-consuing to write a good code comment. Information Retrieval(IR)
methods are used to generate summaries, however, it has 2 main constrains. First, it is hard
for IR to locate accurate keywords if method name and identifier name are not accurate.
Secondly, it relys on the similarity between code snippet. If there is no similar code snippet,
it can not output accurate summaries.In the last few years, a lot of efforts are put into the
research on using deep learning approaches to generate code summaries. Those experience
showed that deep learning increases the effectiveness of code summarization. However Deep
Learning still treat source code as a plain text, which omits some details such as identifier
naming conventions and Application Programming Interface(API).
API is important when summarize the code contents since it closely relates to code functions.
Specific API sequence corresponds to specific features. For example, the following API
FileRead.new, BufferReader.new, BufferReader.read and BufferReader.close are ususally
included when realize function "read a file". As a result, this paper[69] is inspired by
Transfer Learning, aims to use pre-trained API knowledge learned in a different but related
task on code summarization. It proposes a novel method called TL-CodeSum, which gen-
erates a Java code description with the help of a transferred API knowledge from another

66

API summarization task. As a result, there are two main tasks for TL-Code Sum: API
Summarization Task and Code Summarization Task.

• Model
API Sequence Summarization Task
This task aims to map API and natural language description. It uses basic Sequence to Se-
quence(Seq2Seq) model, which is widely used in Machine Translation, Text Summaization
and etc. As shown in the left part in Figure95. It consists of two parts: encoder and decoder.

Figure 95: The architecture of TL-CodeSum (a)API Sequence Summarization (b)Code Summariza-
tion with Transferred API knowledge

Since API innovation in Java A′(i) = [a′1, ..., a
′
m] has a sequence order, RNN structure is

used in API encoder to read the API sequence one by one. Each API innovation sequence
is encoded into a vector representing the API knowledge. To capture the features more
accurately, attention mechanism is used during encoding. Decoder is another RNN which
uses the vector to generate corresponding natural language description of the API innovation
D′(i) = [d′1, ..., d

′
n]. Both RNN are implemented as GRU[70], which need less parameters

and widely used in RNN
Code Summarization Task
As shown in right half of Figure78, code summarization model is implemented in basic
Seq2Seq model. Besides encoder and decoder, TL-CodeSum also adds another API encoder
which contains API summarization transferred from previous model. TL-CodeSum model
aims to generate summaries of source code with the help pf API knowledge obtained from
API sequence summarization model.

• Dataset
Two datasets are used in training. One for API summarization one for code summarization.
Both of them are collected from GitHub, Java project from 2009 to 2014 are used to train
API summarization, while Java projects from 2015 to 2016 is for code summarization
task.To have a high quality performance, only projects have more than 20 stars are set as
preliminary dataset. Those datasets are first parsed into AST trees, then Java methods,
the API sequence contained in those methods and corresponding Javadoc comments are
extracted. Source code is tokenized before they are fed to encoders and comments are used
as code summaries. However, not all comments are useful. Empty or one-word descriptions
are removed. The description of common methods such as getter, setter, constructor are also
excluded.
Finally, 340992 pairs of <API sequence, summary> for API summarization and 69708 pairs
of <API sequence, code, summary> for code summarization task are obtained.

• Experiment
Two metrics are used in this paper, IR metrics and Machine Translation(MT) metrics. For
IR metrics, precision, recall and F-score are used. For MT metrics, BLEU score is used,
which computs the n-gram precision of candidate sequence. METEOR focus on recall
and evaluates the translation hypotheses by aligning the result to references and calculate

67

sentence-level similarities.
The baseline model is CODE-NN, which is a cutting edged code summarization method.
It generates each word by a global attention mechanism. Besides CODE-NN, models
generate summarization given API only and Code only are also introduced. API+Code
model means it trained without transferring API knowledge. Moreover, to examine the
benefits of API knowledge, fine-tuning the whole network(fine tune TL-CodeSum) and fixed
API knowledge(fixed TL-CodeSum) are introduced.

Figure 96: Precision, Recall and F-score for baseline models and proposed model

Figure above illustrates the result on IR metrics using different models. It shows Code only
and API only models performs better than CODE-NN, which uses embedding of tokens
directly. Combining source code with API knowledge improve the performance a lot. The
precision decreases in fine tune models, however, the recall and F-score are both increased.
Overall, TL-CodeSum surpasses all other approaches on generating code summaries.

As for MT metrics, we can see TL-CodeSum clearly outperforms the remaining models.
Using API and Code only performs similar to Code-NN. Integrating API knowledge with
source code largely imrpoves both BLEU score and METEOR score. Thoses models with
API transferred knowledge surpass those don’t by more than 12 percentage. The data are
shown in figure below.

Figure 97: BLEU and METEOR for baseline models and proposed model

4.3.5 A Language-Agnostic Model for Semantic Source Code Labeling

Tags:semantic labeling, multi-label classification, deep learning, CNN, general domain, Transfer
Learning

• Background
Code reuse is helpful to improve coding efficiency, which makes it an essential part in
software developing. However, with the exploding quantity of available source code online,
how to generate accurate and meaningful semantic labels for source code snippets becomes
a problem. Some efforts are put into the problem. For example, Santanu and Prakash[71]
created pattern language to allow users to write generic codelike schematics. The drawback
is that the schema fail to capture the general functionality of a complete program and scale
poorly on large code corpora. Bajracharya et al. built a search engine names Sourcerer
which extract features from corpus to improve keyword search function. The disadvantage
is it suffers from custon language specific parser. Building a model that can work across
all programming language, libraries and projects is difficult to achieve. As a result, this

68

paper[72] aims to propose a novel framework for source code labels generation on arbitrary
language, length and domain. The paper first uses Stack Overflow as a source code extraction
dataset, and it is also the first applies multi-classification which supports label realistic source
code ducuments besides simple SO snippets.

• Model
Convolutional neural networks(CNN) is chosen since it not only has less computation cost
than LSTM but can simultaneously provide predictions for multiple labels.

Figure 98: An overview of the neural network architecture. (a) The characters from original sentence
are transformed into character embeddings (b Stacked convolutional filters in different lengths using
ReLU as activation function are applied to character embeddings (c) We perform sum-over-time
pooling on the output of each stacked convolution. (d) A flattened vector is fed into two fully-
connected, batch-normalized, dense layers with ReLU activations. (e) Each output node uses a
logistic activation function to produce a value from 0 to 1, representing the probability of a given
label.

Figure above is the structure of the neural network architecture. First, each character is
transformed into a 16-dimensional real valued vector. The reason why the paper choose
embeddings on character level instead of word level is that character embeddings can predict
source code without language limitation and the unique identifiers on word level is to
massive to cover.
The embeddings are transformed by PCA to two dimensions vectors to enhance the intuition
of character embedding. After that the embeddings are fed to convolutional layers to
preserve information about words and sequences. Using sum over time pooling on the

69

stacked convolution matrix allows the model to obtain a fixed-length vector regardless of
the initial input size.
After two bateh normalized layers, logistic activation is used on each neuron to get the
probability of occurance of each tag. Binary cross entropy is used as loss function.

• Dataset
The source code are extracted from Stack Overflow(SO), a ask and answer forum on
computer programming. Users can ask questions, answe questions, attach code snippets
and vote for the answers. The advantage of using SO is that it has a huge number of code
snippets, wide set of tags and keeps updated by users about new technologies.

Figure 99: Stack Overflow thread with a question and answer.

Figure above is a screen shoot of SO, question asker can attach maximum five tags. In
this case, the asker add "python", "list" and "slice" as the tag. The question answerers can
answer in both text and code snippets, which is boxed in blue. The snippets don’t necessary
to be a full function code, but oarticular functionality. However, several problems need to be
sorted out: how to associate tages with snippets? how to filter out redundant and useless
data?
For the first question, the paper assigns concates snippets in a single post separated by a new
line characters and assign tags to each post.
The remaining problem is the snippets are not guaranteed to be useful. It can suffer from
short snippets. Figure below is a statistics on the length summary on short snippets. We can
see from the figure that many snippets have empty string or only a few characters long. This
is bad because it barely contains any useful information. The solution proposed by the paper
is to set a threshold length as 10. If the snippet length is greater or equal 10, then it is useful.
They come to the conclusion based on massive snippets observation.

70

Figure 100: A zoomed view of the snippet length distribution, with 1 bin equal to 1 character. There
are many strings that are empty or only a few characters long.

The snippet can also has "missing label phenomenon", which means the post is irrelevant to
the question(judged by the vote score) or the question does not have a label. This is easy to
tackle for machine learning models, since it can be treated as a negative example.
Third problem can be "rare tag problem", since some tags can be rarely used. In the paper,
they cut off tags with fewer than 1000 positive samples.
Source Code Validation data is obtained from randomly samples from GitHub which never
revealed in training step. However, the samples are lack of labels. In order to fix that, the
paper uses human validation by offering a GUI to users and let them tag the samples. The
labels labeled unsure are discarded. The GUI is shown in figure below.

Figure 101: The GUI for human validation of model outputs on source code documents.

• Experiment
The main task of Source Code Validation is to test the ability of model trained on Stack
Overflow in predicting on arbitrary source code. The figure below shows the model obtained
0.769 AUC. And the top 1 accuracy with human validation on source code is 86.6%
accuracy. We note that this is better than the analogous performance on Stack Overflow,
which indicates that, on source code, the model performs better for the first tag, but worse
for the rest.

71

Figure 102: Human validation ROC curve with a 0.769 AUC. This differs from the Stack Overflow
AUC values because it operates on the results of human validation, which is lim- ited to only a few
tags per document.

4.3.6 Summary

For code modality, I only find papers using Transfer Learning. Given to that I assume using Multi-task
Learning in code is still in green area, the reason might be it is hard to find different related tasks.
The idea of method proposed in the paper using Transfer learning are similar. First they train word
embeddings or additional knowledge embeddings on massive dataset, and then transfer that to an
unseen data. As we can see from the results, transfer learning does improve the performance on code
modality.

5 Conclusion

This research paper aims to offer a guideline for researchers to help them decide when to use Transfer
Learning and when to use Multi-task Learning when dealing with data scarcity problem. It introduces
4 types of Language Models: Contextual free model, AutoEncoding model, RNN based model and
Transformer based model, with 3 modalities using those models: Text, Protein and Source Code.
As we can observe from their results, Transfer Learning and Multi-task Learning are widely used
in Text, and both of them performs well. While in Protein, Transfer Learning is more popular than
Multi-task Learning, and modern language models are not widely used in this type, which means
more study should be worked on the field. As for Source Code, only application using Transfer
Learning are found, and the model does not performs much better than Single Task Learning, with
only 10 percentage enhancement.
To make a conclusion, when we have enough pre-trained data to generalize data pattern, we could
use Transfer Learning, when we can easily come up with some related tasks so that they can benefit
from each other to improve their performance, we can try out Multi-task Learning.
During my investigation, I found it is hard to make comparison between TL and MTL since they are
not applied to the same task using the sane dataset and matrix. I hope in the future, researchers could
focus more on comparing TL and MTL in one task using the same dataset. By horizon comparison,
we can have a clearer idea of which method suits for which tasks.

References

[1] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning
applications and trends: algorithms, methods, and techniques, pages 242–264. IGI Global,
2010.

72

[2] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[3] Yu Zhang and Qiang Yang. An overview of multi-task learning. National Science Review,
5(1):30–43, 2017.

[4] Transfer learning - machine learning’s next frontier, author = Sebastian Ruder. https://
ruder.io/transfer-learning/. Written on March,21, 2017.

[5] Transfer learning from pre-trained models, author = Pe-
dro Marcelino. https://towardsdatascience.com/
transfer-learning-from-pre-trained-models-f2393f124751. Written on Oc-
tober,23, 2018.

[6] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

[7] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[8] Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In Proceed-
ings of the first instructional conference on machine learning, volume 242, pages 133–142.
Piscataway, NJ, 2003.

[9] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to latent semantic
analysis. Discourse processes, 25(2-3):259–284, 1998.

[10] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[11] Xin Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738, 2014.

[12] David A Jurgens, Peter D Turney, Saif M Mohammad, and Keith J Holyoak. Semeval-2012
task 2: Measuring degrees of relational similarity. In Proceedings of the First Joint Conference
on Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and
the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic
Evaluation, pages 356–364. Association for Computational Linguistics, 2012.

[13] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies-volume 1, pages
142–150. Association for Computational Linguistics, 2011.

[14] Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D Manning, and Andrew Y Ng.
Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Advances
in neural information processing systems, pages 801–809, 2011.

[15] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[16] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. arXiv preprint arXiv:1901.11504, 2019.

[17] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation:
Contextualized word vectors. In Advances in Neural Information Processing Systems, pages
6294–6305, 2017.

[18] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural machine
translation. arXiv preprint arXiv:1711.02173, 2017.

[19] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

73

https://ruder.io/transfer-learning/
https://ruder.io/transfer-learning/
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

[20] Matthew E Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power. Semi-supervised
sequence tagging with bidirectional language models. arXiv preprint arXiv:1705.00108, 2017.

[21] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. arXiv preprint arXiv:1902.00751, 2019.

[22] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[24] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[25] Huggingface. Transformer on github. https://github.com/huggingface/transformers.
Written by huggingface.

[26] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville. Recur-
rent batch normalization, 2016.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[28] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support vector
classification. 2003.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[30] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine
translation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[31] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

[32] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

[33] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909, 2015.

[34] Tom Kwiatkowski, Sharon Goldwater, Luke Zettlemoyer, and Mark Steedman. A probabilistic
model of syntactic and semantic acquisition from child-directed utterances and their mean-
ings. In Proceedings of the 13th Conference of the European Chapter of the Association for
Computational Linguistics, pages 234–244. Association for Computational Linguistics, 2012.

[35] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019.

[36] kimiyoung. Transformerxl on github. https://github.com/kimiyoung/transformer-xl.
Written by kimiyoung.

[37] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

74

https://github.com/huggingface/transformers
https://github.com/kimiyoung/transformer-xl

[38] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[39] Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question
answering challenge. Transactions of the Association for Computational Linguistics, 7:249–266,
2019.

[40] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bach-
man, and Kaheer Suleman. Newsqa: A machine comprehension dataset. arXiv preprint
arXiv:1611.09830, 2016.

[41] Yu Cao, Meng Fang, Baosheng Yu, and Joey Tianyi Zhou. Unsupervised domain adaptation on
reading comprehension, 2019.

[42] Siddhant Garg, Thuy Vu, and Alessandro Moschitti. Tanda: Transfer and adapt pre-trained
transformer models for answer sentence selection, 2019.

[43] Zhanhong Jiang and Young M. Lee. Deep transfer learning for thermal dynamics modeling in
smart buildings, 2019.

[44] Aditya Khandelwal and Suraj Sawant. Negbert: A transfer learning approach for negation
detection and scope resolution, 2019.

[45] Jeremy Barnes, Erik Velldal, and Lilja Øvrelid. Improving sentiment analysis with multi-task
learning of negation, 2019.

[46] Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task
sequence to sequence learning. arXiv preprint arXiv:1511.06114, 2015.

[47] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[48] Michael Heinzinger, Ahmed Elnaggar, Yu Wang, Christian Dallago, Dmitrii Nachaev, Florian
Matthes, and Burkhard Rost. Modeling the language of life-deep learning protein sequences.
bioRxiv, page 614313, 2019.

[49] Michael Schantz Klausen, Martin Closter Jespersen, Henrik Nielsen, Kamilla Kjaergaard Jensen,
Vanessa Isabell Jurtz, Casper Kaae Soenderby, Morten Otto Alexander Sommer, Ole Winther,
Morten Nielsen, Bent Petersen, et al. Netsurfp-2.0: Improved prediction of protein structural
features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics,
87(6):520–527, 2019.

[50] Charles Yanofsky, Bruce C Carlton, John R Guest, Don R Helinski, and Ulf Henning. On the
colinearity of gene structure and protein structure. Proceedings of the National Academy of
Sciences of the United States of America, 51(2):266, 1964.

[51] Ulrike Göbel, Chris Sander, Reinhard Schneider, and Alfonso Valencia. Correlated mutations
and residue contacts in proteins. Proteins: Structure, Function, and Bioinformatics, 18(4):309–
317, 1994.

[52] DANIÈLE Altschuh, AM Lesk, AC Bloomer, and A Klug. Correlation of co-ordinated amino
acid substitutions with function in viruses related to tobacco mosaic virus. Journal of molecular
biology, 193(4):693–707, 1987.

[53] Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C Lawrence Zitnick,
Jerry Ma, and Rob Fergus. Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. bioRxiv, page 622803, 2019.

[54] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter
Abbeel, and Yun S Song. Evaluating protein transfer learning with tape. arXiv preprint
arXiv:1906.08230, 2019.

75

[55] Sara El-Gebali, Jaina Mistry, Alex Bateman, Sean R Eddy, Aurélien Luciani, Simon C Potter,
Matloob Qureshi, Lorna J Richardson, Gustavo A Salazar, Alfredo Smart, et al. The pfam
protein families database in 2019. Nucleic acids research, 47(D1):D427–D432, 2018.

[56] Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for
mapping protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2017.

[57] Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S
Mishin, George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov,
Onuralp Soylemez, et al. Local fitness landscape of the green fluorescent protein. Nature,
533(7603):397, 2016.

[58] Gabriel J Rocklin, Tamuka M Chidyausiku, Inna Goreshnik, Alex Ford, Scott Houliston,
Alexander Lemak, Lauren Carter, Rashmi Ravichandran, Vikram K Mulligan, Aaron Chevalier,
et al. Global analysis of protein folding using massively parallel design, synthesis, and testing.
Science, 357(6347):168–175, 2017.

[59] Nils Strodthoff, Patrick Wagner, Markus Wenzel, and Wojciech Samek. Udsmprot: Universal
deep sequence models for protein classification. bioRxiv, page 704874, 2019.

[60] UniProt Consortium et al. Uniprot: the universal protein knowledgebase. Nucleic acids research,
46(5):2699, 2018.

[61] Rui Fa, Domenico Cozzetto, Cen Wan, and David T Jones. Predicting human protein function
with multi-task deep neural networks. PloS one, 13(6):e0198216, 2018.

[62] Eddie Antonio Santos, Joshua Charles Campbell, Dhvani Patel, Abram Hindle, and José Nelson
Amaral. Syntax and sensibility: Using language models to detect and correct syntax errors. In
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 311–322. IEEE, 2018.

[63] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension:
a learnable representation of code semantics. In Advances in Neural Information Processing
Systems, pages 3585–3597, 2018.

[64] Michael FP O’Boyle, Zheng Wang, and Dominik Grewe. Portable mapping of data parallel
programs to opencl for heterogeneous systems. In Proceedings of the 2013 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pages 1–10. IEEE Computer
Society, 2013.

[65] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end deep learning
of optimization heuristics. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 219–232. IEEE, 2017.

[66] Alberto Magni, Christophe Dubach, and Michael O’Boyle. Automatic optimization of thread-
coarsening for graphics processors. In Proceedings of the 23rd international conference on
Parallel architectures and compilation, pages 455–466. ACM, 2014.

[67] Lutz Büch and Artur Andrzejak. Learning-based recursive aggregation of abstract syntax trees
for code clone detection. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 95–104. IEEE, 2019.

[68] Jeffrey Svajlenko and Chanchal K Roy. Evaluating clone detection tools with bigclonebench. In
2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages
131–140. IEEE, 2015.

[69] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing source code with
transferred api knowledge. 2018.

[70] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

76

[71] Santanu Paul and Atul Prakash. A framework for source code search using program patterns.
IEEE Transactions on Software Engineering, 20(6):463–475, 1994.

[72] Ben Gelman, Bryan Hoyle, Jessica Moore, Joshua Saxe, and David Slater. A language-agnostic
model for semantic source code labeling. In Proceedings of the 1st International Workshop on
Machine Learning and Software Engineering in Symbiosis, pages 36–44. ACM, 2018.

77

	Introduction
	Theory
	Multi-task Learning
	What is Multi-task learning?
	Motivation
	Two classic MTL structure for Deep Learning
	Categories

	Transfer Learning
	What is Transfer Learning?
	Motivation
	 Deep Transfer Learning
	Categories

	Issues

	General models for NLP
	Classic Approach
	Word2vec
	Glove
	Fasttext

	Modern Approach
	Module Category
	Elmo
	Transformer
	BERT
	GPT
	GPT2
	Transformer XL
	XLNet

	Application
	Text
	Unsupervised Domain Adaption on Reading Comprehension
	TANDA: Transfer and Adapt Pre-Trained Transformer Models for Answer Sentence Selection
	Deep Transfer Learning for Thermal Dynamics Modeling in Smart Buildings
	NegBERT: A Transfer Learning Approach for Negation Detection and Scope Resolution
	Improving Sentiment Analysis with Multi-task Learning of Negation
	Multi-Task Deep Neural Networks for Natural Language Understanding
	MULTI-TASK SEQUENCE TO SEQUENCE LEARNING
	Exploring the Limites of Transfer Learning with a Unified Text-to-Text Transformer
	Summary

	Protein
	MODELING THE LANGUAGE OF LIFE —— DEEP LEARNING PROTEIN SEQUENCES
	BIOLOGICAL STRUCTURE AND FUNCTION EMERGE FROM SCALING UNSUPERVISED LEARNING TO 250 MILLION PROTEIN SEQUENCES
	Evaluating Protein Transfer Learning with TAPE
	UDSMProt: Universal Deep Sequence Models for Protein Classification
	Predicting human protein function with multi- task deep neural networks
	Summary

	Source Code
	Syntax and Sensibility: Using language models to detect and correct syntax errors
	Neural Code Comprehension: A Learnable Representation of Code Semantics
	Learning-based Recursive Aggregation of Abstract Syntax Trees for Code Clone Detection
	Summarizing Source Code with Transferred API Knowledge
	A Language-Agnostic Model for Semantic Source Code Labeling
	Summary

	Conclusion

